These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 39021059)
1. Tip of the iceberg? Three novel TOPLESS-interacting effectors of the gall-inducing fungus Ustilago maydis. Khan M; Uhse S; Bindics J; Kogelmann B; Nagarajan N; Tabassum R; Ingole KD; Djamei A New Phytol; 2024 Nov; 244(3):949-961. PubMed ID: 39021059 [TBL] [Abstract][Full Text] [Related]
2. The fungal pathogen Ustilago maydis targets the maize corepressor RELK2 to modulate host transcription for tumorigenesis. Huang L; Ökmen B; Stolze SC; Kastl M; Khan M; Hilbig D; Nakagami H; Djamei A; Doehlemann G New Phytol; 2024 Feb; 241(4):1747-1762. PubMed ID: 38037456 [TBL] [Abstract][Full Text] [Related]
3. Many ways to TOPLESS - manipulation of plant auxin signalling by a cluster of fungal effectors. Bindics J; Khan M; Uhse S; Kogelmann B; Baggely L; Reumann D; Ingole KD; Stirnberg A; Rybecky A; Darino M; Navarrete F; Doehlemann G; Djamei A New Phytol; 2022 Nov; 236(4):1455-1470. PubMed ID: 35944559 [TBL] [Abstract][Full Text] [Related]
4. Ustilago maydis effector Jsi1 interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. Darino M; Chia KS; Marques J; Aleksza D; Soto-Jiménez LM; Saado I; Uhse S; Borg M; Betz R; Bindics J; Zienkiewicz K; Feussner I; Petit-Houdenot Y; Djamei A New Phytol; 2021 Mar; 229(6):3393-3407. PubMed ID: 33247447 [TBL] [Abstract][Full Text] [Related]
5. The core effector Cce1 is required for early infection of maize by Ustilago maydis. Seitner D; Uhse S; Gallei M; Djamei A Mol Plant Pathol; 2018 Oct; 19(10):2277-2287. PubMed ID: 29745456 [TBL] [Abstract][Full Text] [Related]
6. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors. Schilling L; Matei A; Redkar A; Walbot V; Doehlemann G Mol Plant Pathol; 2014 Oct; 15(8):780-9. PubMed ID: 25346968 [TBL] [Abstract][Full Text] [Related]
7. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169 [TBL] [Abstract][Full Text] [Related]
8. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis. Stirnberg A; Djamei A Mol Plant Pathol; 2016 Dec; 17(9):1467-1479. PubMed ID: 27279632 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptome profiling identifies maize line specificity of fungal effectors in the maize-Ustilago maydis interaction. Schurack S; Depotter JRL; Gupta D; Thines M; Doehlemann G Plant J; 2021 May; 106(3):733-752. PubMed ID: 33570802 [TBL] [Abstract][Full Text] [Related]
10. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Ma LS; Wang L; Trippel C; Mendoza-Mendoza A; Ullmann S; Moretti M; Carsten A; Kahnt J; Reissmann S; Zechmann B; Bange G; Kahmann R Nat Commun; 2018 Apr; 9(1):1711. PubMed ID: 29703884 [TBL] [Abstract][Full Text] [Related]
11. How to make a tumour: cell type specific dissection of Ustilago maydis-induced tumour development in maize leaves. Matei A; Ernst C; Günl M; Thiele B; Altmüller J; Walbot V; Usadel B; Doehlemann G New Phytol; 2018 Mar; 217(4):1681-1695. PubMed ID: 29314018 [TBL] [Abstract][Full Text] [Related]
12. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. Tollot M; Assmann D; Becker C; Altmüller J; Dutheil JY; Wegner CE; Kahmann R PLoS Pathog; 2016 Jun; 12(6):e1005697. PubMed ID: 27332891 [TBL] [Abstract][Full Text] [Related]
13. The Biotrophic Development of Lanver D; Müller AN; Happel P; Schweizer G; Haas FB; Franitza M; Pellegrin C; Reissmann S; Altmüller J; Rensing SA; Kahmann R Plant Cell; 2018 Feb; 30(2):300-323. PubMed ID: 29371439 [TBL] [Abstract][Full Text] [Related]
14. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings. Karakkat BB; Gold SE; Covert SF Fungal Genet Biol; 2013 Dec; 61():111-9. PubMed ID: 24064149 [TBL] [Abstract][Full Text] [Related]
15. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. Mueller AN; Ziemann S; Treitschke S; Aßmann D; Doehlemann G PLoS Pathog; 2013 Feb; 9(2):e1003177. PubMed ID: 23459172 [TBL] [Abstract][Full Text] [Related]
16. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. Yu C; Qi J; Han H; Wang P; Liu C Mol Plant Pathol; 2023 May; 24(5):495-509. PubMed ID: 36808861 [TBL] [Abstract][Full Text] [Related]
17. Investigating the Ustilago maydis/Zea mays pathosystem: transcriptional responses and novel functional aspects of a fungal calcineurin regulatory B subunit. Donaldson ME; Meng S; Gagarinova A; Babu M; Lambie SC; Swiadek AA; Saville BJ Fungal Genet Biol; 2013; 58-59():91-104. PubMed ID: 23973481 [TBL] [Abstract][Full Text] [Related]
18. Nuclear status and leaf tumor formation in the Ustilago maydis-maize pathosystem. Lin JS; Happel P; Kahmann R New Phytol; 2021 Jul; 231(1):399-415. PubMed ID: 33786841 [TBL] [Abstract][Full Text] [Related]
19. The functionally conserved effector Sta1 is a fungal cell wall protein required for virulence in Ustilago maydis. Tanaka S; Gollin I; Rössel N; Kahmann R New Phytol; 2020 Jul; 227(1):185-199. PubMed ID: 32112567 [TBL] [Abstract][Full Text] [Related]
20. Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Basse CW Plant Physiol; 2005 Jul; 138(3):1774-84. PubMed ID: 15980197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]