These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 39021059)
21. A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis. Ludwig N; Reissmann S; Schipper K; Gonzalez C; Assmann D; Glatter T; Moretti M; Ma LS; Rexer KH; Snetselaar K; Kahmann R Nat Microbiol; 2021 Jun; 6(6):722-730. PubMed ID: 33941900 [TBL] [Abstract][Full Text] [Related]
22. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of Schuster M; Schweizer G; Reißmann S; Happel P; Aßmann D; Rössel N; Güldener U; Mannhaupt G; Ludwig N; Winterberg S; Pellegrin C; Tanaka S; Vincon V; Presti LL; Wang L; Bender L; Gonzalez C; Vranes M; Kämper J; Seong K; Krasileva K; Kahmann R Mol Plant Microbe Interact; 2024 Mar; 37(3):250-263. PubMed ID: 38416124 [TBL] [Abstract][Full Text] [Related]
23. Combination of in vivo proximity labeling and co-immunoprecipitation identifies the host target network of a tumor-inducing effector in the fungal maize pathogen Ustilago maydis. Shi W; Stolze SC; Nakagami H; Misas Villamil JC; Saur IML; Doehlemann G J Exp Bot; 2023 Aug; 74(15):4736-4750. PubMed ID: 37225161 [TBL] [Abstract][Full Text] [Related]
24. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. Doehlemann G; van der Linde K; Assmann D; Schwammbach D; Hof A; Mohanty A; Jackson D; Kahmann R PLoS Pathog; 2009 Feb; 5(2):e1000290. PubMed ID: 19197359 [TBL] [Abstract][Full Text] [Related]
25. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem. Tanaka S; Djamei A; Presti LL; Schipper K; Winterberg S; Amati S; Becker D; Büchner H; Kumlehn J; Reissmann S; Kahmann R Eur J Cell Biol; 2015; 94(7-9):349-58. PubMed ID: 26118724 [TBL] [Abstract][Full Text] [Related]
26. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. Hemetsberger C; Herrberger C; Zechmann B; Hillmer M; Doehlemann G PLoS Pathog; 2012; 8(5):e1002684. PubMed ID: 22589719 [TBL] [Abstract][Full Text] [Related]
27. Chitosan and Chitin Deacetylase Activity Are Necessary for Development and Virulence of Ustilago maydis. Rizzi YS; Happel P; Lenz S; Urs MJ; Bonin M; Cord-Landwehr S; Singh R; Moerschbacher BM; Kahmann R mBio; 2021 Mar; 12(2):. PubMed ID: 33653886 [TBL] [Abstract][Full Text] [Related]
28. Conservation of the Ustilago maydis effector See1 in related smuts. Redkar A; Villajuana-Bonequi M; Doehlemann G Plant Signal Behav; 2015; 10(12):e1086855. PubMed ID: 26357869 [TBL] [Abstract][Full Text] [Related]
29. Alternative cell death mechanisms determine epidermal resistance in incompatible barley-Ustilago interactions. Hof A; Zechmann B; Schwammbach D; Hückelhoven R; Doehlemann G Mol Plant Microbe Interact; 2014 May; 27(5):403-14. PubMed ID: 24329174 [TBL] [Abstract][Full Text] [Related]
30. Maize requires arogenate dehydratase 2 for resistance to Ustilago maydis and plant development. Ren RC; Kong LG; Zheng GM; Zhao YJ; Jiang X; Wu JW; Liu C; Chu J; Ding XH; Zhang XS; Wang GF; Zhao XY Plant Physiol; 2024 May; 195(2):1642-1659. PubMed ID: 38431524 [TBL] [Abstract][Full Text] [Related]
31. Effector-mediated relocalization of a maize lipoxygenase protein triggers susceptibility to Ustilago maydis. Saado I; Chia KS; Betz R; Alcântara A; Pettkó-Szandtner A; Navarrete F; D'Auria JC; Kolomiets MV; Melzer M; Feussner I; Djamei A Plant Cell; 2022 Jul; 34(7):2785-2805. PubMed ID: 35512341 [TBL] [Abstract][Full Text] [Related]
32. The secretome of the maize pathogen Ustilago maydis. Mueller O; Kahmann R; Aguilar G; Trejo-Aguilar B; Wu A; de Vries RP Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S63-70. PubMed ID: 18456523 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction. Jasso-Robles FI; Jiménez-Bremont JF; Becerra-Flora A; Juárez-Montiel M; Gonzalez ME; Pieckenstain FL; García de la Cruz RF; Rodríguez-Kessler M Plant Physiol Biochem; 2016 May; 102():115-24. PubMed ID: 26926794 [TBL] [Abstract][Full Text] [Related]
35. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Doehlemann G; Reissmann S; Assmann D; Fleckenstein M; Kahmann R Mol Microbiol; 2011 Aug; 81(3):751-66. PubMed ID: 21692877 [TBL] [Abstract][Full Text] [Related]
36. TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. Navarrete F; Gallei M; Kornienko AE; Saado I; Khan M; Chia KS; Darino MA; Bindics J; Djamei A Plant Commun; 2022 Mar; 3(2):100269. PubMed ID: 35529945 [TBL] [Abstract][Full Text] [Related]
37. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. van der Linde K; Kastner C; Kumlehn J; Kahmann R; Doehlemann G New Phytol; 2011 Jan; 189(2):471-83. PubMed ID: 21039559 [TBL] [Abstract][Full Text] [Related]
39. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors. Redkar A; Hoser R; Schilling L; Zechmann B; Krzymowska M; Walbot V; Doehlemann G Plant Cell; 2015 Apr; 27(4):1332-51. PubMed ID: 25888589 [TBL] [Abstract][Full Text] [Related]
40. A rapid and efficient method for assessing pathogenicity of ustilago maydis on maize and teosinte lines. Chavan S; Smith SM J Vis Exp; 2014 Jan; (83):e50712. PubMed ID: 24430201 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]