These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3902111)

  • 1. Interactions of some naturally occurring cations with phenylalanine and initiator tRNA from yeast as reflected by their thermal stability.
    Heerschap A; Walters JA; Hilbers CW
    Biophys Chem; 1985 Aug; 22(3):205-17. PubMed ID: 3902111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton exchange rates in transfer RNA as a function of spermidine and magnesium.
    Tropp JS; Redfield AG
    Nucleic Acids Res; 1983 Apr; 11(7):2121-34. PubMed ID: 6340067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves.
    Römer R; Hach R
    Eur J Biochem; 1975 Jun; 55(1):271-84. PubMed ID: 1100382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of magnesium and polyamines on the structure of yeast tRNAPhe.
    Bolton PH; Kearns DR
    Biochim Biophys Acta; 1977 Jul; 477(1):10-9. PubMed ID: 884107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering the intermediate in the equilibrium folding of unmodified yeast tRNAPhe with monovalent and divalent cations.
    Shelton VM; Sosnick TR; Pan T
    Biochemistry; 2001 Mar; 40(12):3629-38. PubMed ID: 11297430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of polaymines on yeast cell-free protein synthesizing system. I. Influence of spermine and spermidine on aminoacyl-tRNA transfer reaction.
    Wolska-Mitaszko B; Jakubowicz T; Gasior E
    Acta Microbiol Pol; 1976; 25(3):187-97. PubMed ID: 62494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of spermine and magnesium ions on the aminoacylation of yeast tRNA(Tyr).
    Plohl M; Kućan Z
    Biochimie; 1988 May; 70(5):637-44. PubMed ID: 3139082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinities and selectivities of divalent cation binding sites within an RNA tertiary structure.
    Bukhman YV; Draper DE
    J Mol Biol; 1997 Nov; 273(5):1020-31. PubMed ID: 9367788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual adaptation of yeast tRNAPhe and phenylalanyl-tRNA synthetase: Possible role of tryptophan residues and long range interactions.
    Lefevre JF; Ehrlich R; Kilhoffer MC; Remy P
    FEBS Lett; 1980 Jun; 114(2):219-24. PubMed ID: 6993228
    [No Abstract]   [Full Text] [Related]  

  • 10. Binding of spermidine to transfer ribonucleic acid.
    McMahon ME; Erdmann VA
    Biochemistry; 1982 Oct; 21(21):5280-8. PubMed ID: 6924591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent tRNA derivatives and ribosome recognition.
    Wintermeyer W; Robertson JM; Zachau HG
    Mol Biol Biochem Biophys; 1980; 32():368-75. PubMed ID: 7003351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of polyamines on isoleucyl-tRNA formation by rat-liver isoleucyl-tRNA synthetase.
    Igarashi K; Eguchi K; Tanaka M; Hirose S
    Eur J Biochem; 1978 Jan; 82(1):301-7. PubMed ID: 244419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoacyl transfer RNA formation. Binding of cations to transfer RNA and its role in aminoacyl transfer RNA formation.
    Takeda Y; Ohnishi T; Ogiso Y
    J Biochem; 1976 Sep; 80(3):463-9. PubMed ID: 789364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the polyamines spermine and spermidine on yeast tRNAPhe as revealed from its imino proton NMR spectrum.
    Heerschap A; Walters JA; Hilbers CW
    Nucleic Acids Res; 1986 Jan; 14(2):983-98. PubMed ID: 3511448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric studies on melting of tRNA Phe (yeast).
    Hinz HJ; Filimonov VV; Privalov PL
    Eur J Biochem; 1977 Jan; 72(1):79-86. PubMed ID: 319003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of RNA tertiary structure by monovalent cations.
    Shiman R; Draper DE
    J Mol Biol; 2000 Sep; 302(1):79-91. PubMed ID: 10964562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ribosomal E site at low Mg2+: coordinate inactivation of ribosomal functions at Mg2+ concentrations below 10 mM and its prevention by polyamines.
    Rheinberger HJ; Nierhaus KH
    J Biomol Struct Dyn; 1987 Oct; 5(2):435-46. PubMed ID: 3078235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast.
    Krauss G; Riesner D; Maass G
    Eur J Biochem; 1976 Sep; 68(1):81-93. PubMed ID: 9288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.