These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 39021203)
21. Dissecting the role of soybean rhizosphere-enriched bacterial taxa in modulating nitrogen-cycling functions. Wang T; Gao M; Shao W; Wang L; Yang C; Wang X; Yao S; Zhang B Appl Microbiol Biotechnol; 2024 May; 108(1):347. PubMed ID: 38805033 [TBL] [Abstract][Full Text] [Related]
22. Microplastics affect the ecological stoichiometry of plant, soil and microbes in a greenhouse vegetable system. Palansooriya KN; Zhou Y; An Z; Cai Y; Chang SX Sci Total Environ; 2024 May; 924():171602. PubMed ID: 38461987 [TBL] [Abstract][Full Text] [Related]
23. Sub-micron microplastics affect nitrogen cycling by altering microbial abundance and activities in a soil-legume system. Kim K; Song IG; Yoon H; Park JW J Hazard Mater; 2023 Oct; 460():132504. PubMed ID: 37703725 [TBL] [Abstract][Full Text] [Related]
24. Mulch-derived microplastic aging promotes phthalate esters and alters organic carbon fraction content in grassland and farmland soils. Zhang H; Huang Y; An S; Wang P; Xie C; Jia P; Huang Q; Wang B J Hazard Mater; 2024 Jan; 461():132619. PubMed ID: 37757559 [TBL] [Abstract][Full Text] [Related]
25. Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. Lian Y; Liu W; Shi R; Zeb A; Wang Q; Li J; Zheng Z; Tang J J Hazard Mater; 2022 Aug; 435():129057. PubMed ID: 35650727 [TBL] [Abstract][Full Text] [Related]
26. Effects of polystyrene, polyethylene, and polypropylene microplastics on the soil-rhizosphere-plant system: Phytotoxicity, enzyme activity, and microbial community. Lian Y; Shi R; Liu J; Zeb A; Wang Q; Wang J; Yu M; Li J; Zheng Z; Ali N; Bao Y; Liu W J Hazard Mater; 2024 Mar; 465():133417. PubMed ID: 38183945 [TBL] [Abstract][Full Text] [Related]
27. Effects of micro(nano)plastics on higher plants and the rhizosphere environment. Chen G; Li Y; Liu S; Junaid M; Wang J Sci Total Environ; 2022 Feb; 807(Pt 1):150841. PubMed ID: 34627902 [TBL] [Abstract][Full Text] [Related]
28. Effects of microplastics on carbon release and microbial community in mangrove soil systems. Zhou X; Xiao C; Zhang B; Chen T; Yang X J Hazard Mater; 2024 Mar; 465():133152. PubMed ID: 38056259 [TBL] [Abstract][Full Text] [Related]
29. Exploring the potential of biochar for the remediation of microbial communities and element cycling in microplastic-contaminated soil. Wu C; Ma Y; Shan Y; Song X; Wang D; Ren X; Hu H; Cui J; Ma Y Chemosphere; 2024 Aug; 362():142698. PubMed ID: 38925523 [TBL] [Abstract][Full Text] [Related]
30. Effects of combined microplastic and cadmium pollution on sorghum growth, Cd accumulation, and rhizosphere microbial functions. Duan LY; Zhang Y; Li YY; Li XQ; Liu YQ; Li BL; Ding CY; Ren XM; Duan PF; Han H; Chen ZJ Ecotoxicol Environ Saf; 2024 Jun; 277():116380. PubMed ID: 38677068 [TBL] [Abstract][Full Text] [Related]
31. Laboratory tidal microcosm deciphers responses of sediment archaeal and bacterial communities to microplastic exposure. Fang C; He Y; Yang Y; Fu B; Pan S; Jiao F; Wang J; Yang H J Hazard Mater; 2023 Sep; 458():131813. PubMed ID: 37339576 [TBL] [Abstract][Full Text] [Related]
32. Effects of polystyrene microplastics on the agronomic traits and rhizosphere soil microbial community of highland barley. Xiang P; Liao W; Xiong Z; Xiao W; Luo Y; Peng L; Zou L; Zhao C; Li Q Sci Total Environ; 2024 Jan; 907():167986. PubMed ID: 37879483 [TBL] [Abstract][Full Text] [Related]
33. Multi-omics analyses reveal the responses of wheat (Triticum aestivum L.) and rhizosphere bacterial community to nano(micro)plastics stress. Zhuang M; Qiao C; Han L; Bi Y; Cao M; Wang S; Guo L; Pang R; Xie H J Nanobiotechnology; 2024 Aug; 22(1):507. PubMed ID: 39180071 [TBL] [Abstract][Full Text] [Related]
34. Microplastic dilemma: Assessing the unexpected trade-offs between biodegradable and non-biodegradable forms on plant health, cadmium uptake, and sediment microbial ecology. Zhou W; Huang D; Chen S; Wang G; Li R; Xu W; Lei Y; Xiao R; Yin L; Chen H; Li F J Hazard Mater; 2024 Sep; 477():135240. PubMed ID: 39079302 [TBL] [Abstract][Full Text] [Related]
35. Biochar relieves the toxic effects of microplastics on the root-rhizosphere soil system by altering root expression profiles and microbial diversity and functions. Yang L; Shen P; Liang H; Wu Q Ecotoxicol Environ Saf; 2024 Feb; 271():115935. PubMed ID: 38211514 [TBL] [Abstract][Full Text] [Related]
36. Effects of biodegradable microplastics on arsenic migration and transformation in paddy soils: a comparative analysis with conventional microplastics. An Q; Zhen Z; Zhong N; Qiu D; Xie Y; Yan C J Hazard Mater; 2024 May; 469():134053. PubMed ID: 38508111 [TBL] [Abstract][Full Text] [Related]
37. Biodegradable microplastics enhance soil microbial network complexity and ecological stochasticity. Sun Y; Li X; Cao N; Duan C; Ding C; Huang Y; Wang J J Hazard Mater; 2022 Oct; 439():129610. PubMed ID: 35863232 [TBL] [Abstract][Full Text] [Related]
38. Enhancing intercropping sustainability: Manipulating soybean rhizosphere microbiome through cropping patterns. Dang P; Lu C; Huang T; Zhang M; Yang N; Han X; Xu C; Wang S; Wan C; Qin X; Siddique KHM Sci Total Environ; 2024 Jun; 931():172714. PubMed ID: 38679108 [TBL] [Abstract][Full Text] [Related]
39. Effect of polyethylene microplastics on antibiotic resistance genes: A comparison based on different soil types and plant types. Li Y; Shi X; Zeng M; Qin P; Fu M; Luo S; Tang C; Mo C; Yu F J Hazard Mater; 2024 Jul; 472():134581. PubMed ID: 38743972 [TBL] [Abstract][Full Text] [Related]
40. Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling. Liu Y; Xu F; Ding L; Zhang G; Bai B; Han Y; Xiao L; Song Y; Li Y; Wan S; Li G J Hazard Mater; 2023 Feb; 443(Pt B):130384. PubMed ID: 36444071 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]