These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 39021206)

  • 1. New insights into the role of the root system of epiphytic bromeliads: comparison of root and leaf trichome functions in acquisition of water and nutrients.
    Takahashi CA; Mercier H
    Ann Bot; 2024 Jul; ():. PubMed ID: 39021206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of aquaporins on nitrogen-acquisition strategies of juvenile and adult plants of an epiphytic tank-forming bromeliad.
    Matiz A; Cambuí CA; Richet N; Mioto PT; Gomes F; Pikart FC; Chaumont F; Gaspar M; Mercier H
    Planta; 2019 Jul; 250(1):319-332. PubMed ID: 31030328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutualistic ants contribute to tank-bromeliad nutrition.
    Leroy C; Carrias JF; Corbara B; Pélozuelo L; Dézerald O; Brouard O; Dejean A; Céréghino R
    Ann Bot; 2013 Sep; 112(5):919-26. PubMed ID: 23864002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demographic effects of harvesting epiphytic bromeliads and an alternative approach to collection.
    Chaparro DM; Ticktin T
    Conserv Biol; 2011 Aug; 25(4):797-807. PubMed ID: 21658129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'And then there were three': highly efficient uptake of potassium by foliar trichomes of epiphytic bromeliads.
    Winkler U; Zotz G
    Ann Bot; 2010 Sep; 106(3):421-7. PubMed ID: 20542886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local drivers of heterogeneity in a tropical forest: epiphytic tank bromeliads affect the availability of soil resources and conditions and indirectly affect the structure of seedling communities.
    Pereira TA; Vieira SA; Oliveira RS; Antiqueira PAP; Migliorini GH; Romero GQ
    Oecologia; 2022 May; 199(1):205-215. PubMed ID: 35526202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen metabolism in leaves of a tank epiphytic bromeliad: characterization of a spatial and functional division.
    Takahashi CA; Mercier H
    J Plant Physiol; 2011 Jul; 168(11):1208-16. PubMed ID: 21333380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea.
    Inselsbacher E; Cambui CA; Richter A; Stange CF; Mercier H; Wanek W
    New Phytol; 2007; 175(2):311-320. PubMed ID: 17587379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of epidermal cell turgor pressure and photosynthetic activity of leaves of the atmospheric epiphyte Tillandsia usneoides (Bromeliaceae) after exposure to high humidity.
    Martin CE; Rux G; Herppich WB
    J Plant Physiol; 2013 Jan; 170(1):70-3. PubMed ID: 23000465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage.
    Freschi L; Takahashi CA; Cambui CA; Semprebom TR; Cruz AB; Mioto PT; de Melo Versieux L; Calvente A; Latansio-Aidar SR; Aidar MP; Mercier H
    J Plant Physiol; 2010 May; 167(7):526-33. PubMed ID: 19954859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential sources of nitrogen in an ant-garden tank-bromeliad.
    Leroy C; Corbara B; Dejean A; Céréghino R
    Plant Signal Behav; 2009 Sep; 4(9):868-70. PubMed ID: 19847109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trade-off between soluble protein production and nutritional storage in Bromeliaceae.
    Gonçalves AZ; Mercier H; Oliveira RS; Romero GQ
    Ann Bot; 2016 Nov; 118(6):1199-1208. PubMed ID: 27578765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ciliate species from tank-less bromeliads in a dry tropical forest and their geographical distribution in the Neotropics.
    DurÁn-ramÍrez CA; MayÉn-Estrada R
    Zootaxa; 2018 Oct; 4497(2):241-257. PubMed ID: 30313676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drought effects on resource partition and conservation among leaf ontogenetic stages in epiphytic tank bromeliads.
    Svensk M; Coste S; Gérard B; Gril E; Julien F; Maillard P; Stahl C; Leroy C
    Physiol Plant; 2020 Dec; 170(4):488-507. PubMed ID: 32623731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf hydraulic conductance for a tank bromeliad: axial and radial pathways for moving and conserving water.
    North GB; Lynch FH; Maharaj FD; Phillips CA; Woodside WT
    Front Plant Sci; 2013; 4():78. PubMed ID: 23596446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity and distribution of epiphytic bromeliads in a Brazilian subtropical mangrove.
    Sousa MM; Colpo KD
    An Acad Bras Cienc; 2017; 89(2):1085-1093. PubMed ID: 28489202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient uptake of phosphorus in epiphytic bromeliads.
    Winkler U; Zotz G
    Ann Bot; 2009 Feb; 103(3):477-84. PubMed ID: 19033287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taxonomic, phylogenetic and functional diversity of root-associated fungi in bromeliads: effects of host identity, life forms and nutritional modes.
    Leroy C; Maes AQ; Louisanna E; Schimann H; Séjalon-Delmas N
    New Phytol; 2021 Aug; 231(3):1195-1209. PubMed ID: 33605460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. External water transport is more important than vascular transport in the extreme atmospheric epiphyte Tillandsia usneoides (Spanish moss).
    Herppich WB; Martin CE; Tötzke C; Manke I; Kardjilov N
    Plant Cell Environ; 2019 May; 42(5):1645-1656. PubMed ID: 30506732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Go with the flow: The extent of drag reduction as epiphytic bromeliads reorient in wind.
    Tay JYL; Zotz G; Puczylowski J; Einzmann HJR
    PLoS One; 2021; 16(6):e0252790. PubMed ID: 34166417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.