These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 39022292)
1. Multiparametric magnetic resonance imaging (MRI)-based radiomics model explained by the Shapley Additive exPlanations (SHAP) method for predicting complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicenter retrospective study. Wang Y; Zhang L; Jiang Y; Cheng X; He W; Yu H; Li X; Yang J; Yao G; Lu Z; Zhang Y; Yan S; Zhao F Quant Imaging Med Surg; 2024 Jul; 14(7):4617-4634. PubMed ID: 39022292 [TBL] [Abstract][Full Text] [Related]
2. Multiparametric MRI-based radiomic model for predicting lymph node metastasis after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wei Q; Chen L; Hou X; Lin Y; Xie R; Yu X; Zhang H; Wen Z; Wu Y; Liu X; Chen W Insights Imaging; 2024 Jun; 15(1):163. PubMed ID: 38922456 [TBL] [Abstract][Full Text] [Related]
3. A multiple-time-scale comparative study for the added value of magnetic resonance imaging-based radiomics in predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Peng W; Wan L; Wang S; Zou S; Zhao X; Zhang H Front Oncol; 2023; 13():1234619. PubMed ID: 37664046 [TBL] [Abstract][Full Text] [Related]
4. Prediction and validation of pathologic complete response for locally advanced rectal cancer under neoadjuvant chemoradiotherapy based on a novel predictor using interpretable machine learning. Wang Y; Pan Z; Li S; Cai H; Huang Y; Zhuang J; Liu X; Lu X; Guan G Eur J Surg Oncol; 2024 Dec; 50(12):108738. PubMed ID: 39395242 [TBL] [Abstract][Full Text] [Related]
5. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616 [TBL] [Abstract][Full Text] [Related]
6. MRI-based radiomics to predict neoadjuvant chemoradiotherapy outcomes in locally advanced rectal cancer: A multicenter study. Xiang Y; Li S; Wang H; Song M; Hu K; Wang F; Wang Z; Niu Z; Liu J; Cai Y; Li Y; Zhu X; Geng J; Zhang Y; Teng H; Wang W Clin Transl Radiat Oncol; 2023 Jan; 38():175-182. PubMed ID: 36471751 [TBL] [Abstract][Full Text] [Related]
7. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304 [TBL] [Abstract][Full Text] [Related]
8. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI. Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933 [TBL] [Abstract][Full Text] [Related]
9. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200 [TBL] [Abstract][Full Text] [Related]
10. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Wen L; Liu J; Hu P; Bi F; Liu S; Jian L; Zhu S; Nie S; Cao F; Lu Q; Yu X; Liu K Acad Radiol; 2023 Sep; 30 Suppl 1():S176-S184. PubMed ID: 36739228 [TBL] [Abstract][Full Text] [Related]
11. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Cheng Y; Luo Y; Hu Y; Zhang Z; Wang X; Yu Q; Liu G; Cui E; Yu T; Jiang X Abdom Radiol (NY); 2021 Nov; 46(11):5072-5085. PubMed ID: 34302510 [TBL] [Abstract][Full Text] [Related]
12. Radiomics-Based Pretherapeutic Prediction of Non-response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Zhou X; Yi Y; Liu Z; Cao W; Lai B; Sun K; Li L; Zhou Z; Feng Y; Tian J Ann Surg Oncol; 2019 Jun; 26(6):1676-1684. PubMed ID: 30887373 [TBL] [Abstract][Full Text] [Related]
13. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics. El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143 [TBL] [Abstract][Full Text] [Related]
14. The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study. Wang Y; Lang J; Zuo JZ; Dong Y; Hu Z; Xu X; Zhang Y; Wang Q; Yang L; Wong STC; Wang H; Li H Eur Radiol; 2022 Dec; 32(12):8737-8747. PubMed ID: 35678859 [TBL] [Abstract][Full Text] [Related]
15. Predicting the pathological invasiveness in patients with a solitary pulmonary nodule via Shapley additive explanations interpretation of a tree-based machine learning radiomics model: a multicenter study. Zhang R; Hong M; Cai H; Liang Y; Chen X; Liu Z; Wu M; Zhou C; Bao C; Wang H; Yang S; Hu Q Quant Imaging Med Surg; 2023 Dec; 13(12):7828-7841. PubMed ID: 38106261 [TBL] [Abstract][Full Text] [Related]
16. Development of a Joint Prediction Model Based on Both the Radiomics and Clinical Factors for Predicting the Tumor Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Liu Y; Zhang FJ; Zhao XX; Yang Y; Liang CY; Feng LL; Wan XB; Ding Y; Zhang YW Cancer Manag Res; 2021; 13():3235-3246. PubMed ID: 33880066 [TBL] [Abstract][Full Text] [Related]
17. Radiomics Signature Based on Support Vector Machines for the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Li C; Chen H; Zhang B; Fang Y; Sun W; Wu D; Su Z; Shen L; Wei Q Cancers (Basel); 2023 Oct; 15(21):. PubMed ID: 37958309 [TBL] [Abstract][Full Text] [Related]
18. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients. Wang J; Chen J; Zhou R; Gao Y; Li J BMC Cancer; 2022 Apr; 22(1):420. PubMed ID: 35439946 [TBL] [Abstract][Full Text] [Related]
19. MRI-Based Radiomics Predicts Tumor Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Yi X; Pei Q; Zhang Y; Zhu H; Wang Z; Chen C; Li Q; Long X; Tan F; Zhou Z; Liu W; Li C; Zhou Y; Song X; Li Y; Liao W; Li X; Sun L; Pei H; Zee C; Chen BT Front Oncol; 2019; 9():552. PubMed ID: 31293979 [No Abstract] [Full Text] [Related]
20. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]