These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 39022407)
41. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. Zhao D; Zhang H; Cao Q; Wang Z; He S; Zhou M; Zhang R PLoS One; 2022; 17(2):e0262734. PubMed ID: 35196309 [TBL] [Abstract][Full Text] [Related]
42. Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China. Zheng Y; Zhang L; Wang L; Rifhat R BMC Infect Dis; 2020 Apr; 20(1):300. PubMed ID: 32321419 [TBL] [Abstract][Full Text] [Related]
43. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707 [No Abstract] [Full Text] [Related]
44. Prediction of Daily Patient Numbers for a Regional Emergency Medical Center using Time Series Analysis. Kam HJ; Sung JO; Park RW Healthc Inform Res; 2010 Sep; 16(3):158-65. PubMed ID: 21818435 [TBL] [Abstract][Full Text] [Related]
45. Comparison of Three Prediction Models for Predicting Chronic Obstructive Pulmonary Disease in China. Teng Y; Jian Y; Chen X; Li Y; Han B; Wang L Int J Chron Obstruct Pulmon Dis; 2023; 18():2961-2969. PubMed ID: 38107597 [TBL] [Abstract][Full Text] [Related]
46. A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China. Zhao R; Liu J; Zhao Z; Zhai M; Ren H; Wang X; Li Y; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Oct; 23(1):665. PubMed ID: 37805543 [TBL] [Abstract][Full Text] [Related]
47. A Combined Model of SARIMA and Prophet Models in Forecasting AIDS Incidence in Henan Province, China. Luo Z; Jia X; Bao J; Song Z; Zhu H; Liu M; Yang Y; Shi X Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627447 [TBL] [Abstract][Full Text] [Related]
48. Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model. Wang Y; Xu C; Wang Z; Zhang S; Zhu Y; Yuan J PLoS One; 2018; 13(12):e0208404. PubMed ID: 30586416 [TBL] [Abstract][Full Text] [Related]
49. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model. Zhang X; Pang Y; Cui M; Stallones L; Xiang H Ann Epidemiol; 2015 Feb; 25(2):101-6. PubMed ID: 25467006 [TBL] [Abstract][Full Text] [Related]
50. SARFIMA model prediction for infectious diseases: application to hemorrhagic fever with renal syndrome and comparing with SARIMA. Qi C; Zhang D; Zhu Y; Liu L; Li C; Wang Z; Li X BMC Med Res Methodol; 2020 Sep; 20(1):243. PubMed ID: 32993517 [TBL] [Abstract][Full Text] [Related]
51. Seasonal autoregressive integrated moving average (SARIMA) time-series model for milk production forecasting in pasture-based dairy cows in the Andean highlands. Perez-Guerra UH; Macedo R; Manrique YP; Condori EA; Gonzáles HI; Fernández E; Luque N; Pérez-Durand MG; García-Herreros M PLoS One; 2023; 18(11):e0288849. PubMed ID: 37972120 [TBL] [Abstract][Full Text] [Related]
52. Predicting the epidemiological trend of acute hemorrhagic conjunctivitis in China using Bayesian structural time-series model. Xu G; Fan T; Zhao Y; Wu W; Wang Y Sci Rep; 2024 Jul; 14(1):17364. PubMed ID: 39075257 [TBL] [Abstract][Full Text] [Related]
53. Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi Province, China: a time series predictive analysis. Zhai M; Li W; Tie P; Wang X; Xie T; Ren H; Zhang Z; Song W; Quan D; Li M; Chen L; Qiu L BMC Infect Dis; 2021 Mar; 21(1):280. PubMed ID: 33740904 [TBL] [Abstract][Full Text] [Related]
54. Interruption time series analysis using autoregressive integrated moving average model: evaluating the impact of COVID-19 on the epidemic trend of gonorrhea in China. Li Y; Liu X; Li X; Xue C; Zhang B; Wang Y BMC Public Health; 2023 Oct; 23(1):2073. PubMed ID: 37872621 [TBL] [Abstract][Full Text] [Related]
55. A hybrid model for hand-foot-mouth disease prediction based on ARIMA-EEMD-LSTM. Wan Y; Song P; Liu J; Xu X; Lei X BMC Infect Dis; 2023 Dec; 23(1):879. PubMed ID: 38102558 [TBL] [Abstract][Full Text] [Related]
56. Forecasting of monthly relative humidity in Delhi, India, using SARIMA and ANN models. Shad M; Sharma YD; Singh A Model Earth Syst Environ; 2022; 8(4):4843-4851. PubMed ID: 35434264 [TBL] [Abstract][Full Text] [Related]
57. An Advanced Data-Driven Hybrid Model of SARIMA-NNNAR for Tuberculosis Incidence Time Series Forecasting in Qinghai Province, China. Wang Y; Xu C; Li Y; Wu W; Gui L; Ren J; Yao S Infect Drug Resist; 2020; 13():867-880. PubMed ID: 32273731 [TBL] [Abstract][Full Text] [Related]
58. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
59. Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions. Prendin F; Díez JL; Del Favero S; Sparacino G; Facchinetti A; Bondia J Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433278 [TBL] [Abstract][Full Text] [Related]
60. A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh. Noorunnahar M; Chowdhury AH; Mila FA PLoS One; 2023; 18(3):e0283452. PubMed ID: 36972270 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]