These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 3902244)
1. Immunohistochemical and biochemical study on the development of the noradrenaline- and adrenaline-storing cells of the adrenal medulla of the rat. Verhofstad AA; Coupland RE; Parker TR; Goldstein M Cell Tissue Res; 1985; 242(2):233-43. PubMed ID: 3902244 [TBL] [Abstract][Full Text] [Related]
2. Immunohistochemical and biochemical analysis of the development of the noradrenaline- and adrenaline-storing cells in the adrenal medulla of the rat and pig. Verhofstad AA; Coupland RE; Colenbrander B Arch Histol Cytol; 1989; 52 Suppl():351-60. PubMed ID: 2510792 [TBL] [Abstract][Full Text] [Related]
3. Appearance of tyrosine hydroxylase, aromatic amino-acid decarboxylase, dopamine beta-hydroxylase and phenylethanolamine N-methyltransferase during the ontogenesis of the adrenal medulla: an immunohistochemical study in the rat. Verhofstad AA; Hökfelt T; Goldstein M; Steinbusch HW; Joosten HW Cell Tissue Res; 1979 Aug; 200(1):1-13. PubMed ID: 40700 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous immunoenzymatic staining of catecholamines, catecholamine-biosynthesizing enzymes, and bromodeoxyuridine in adrenal medullary cells of the rat. Ubink R; Lange W; Verhofstad A J Histochem Cytochem; 1995 Jan; 43(1):39-46. PubMed ID: 7822762 [TBL] [Abstract][Full Text] [Related]
5. Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. Armstrong DM; Ross CA; Pickel VM; Joh TH; Reis DJ J Comp Neurol; 1982 Dec; 212(2):173-87. PubMed ID: 6142061 [TBL] [Abstract][Full Text] [Related]
6. Acetylcholinesterase activity, and neurofilament protein, and catecholamine synthesizing enzymes immunoreactivities in the mouse adrenal gland during postnatal development. Iwasa K; Oomori Y; Tanaka H J Vet Med Sci; 1999 Jun; 61(6):621-9. PubMed ID: 10423683 [TBL] [Abstract][Full Text] [Related]
7. Ontogeny of phenylethanolamine N-methyltransferase- and tyrosine hydroxylase-like immunoreactivity in presumptive adrenaline neurones of the foetal rat central nervous system. Foster GA; Schultzberg M; Goldstein M; Hökfelt T J Comp Neurol; 1985 Jun; 236(3):348-81. PubMed ID: 2865276 [TBL] [Abstract][Full Text] [Related]
8. 5-Hydroxytryptamine and catecholamines in developing sympathetic cells of the rat. Soinila S; Ahonen M; Joh TH; Steinbusch HW J Auton Nerv Syst; 1988 Apr; 22(3):193-202. PubMed ID: 2901441 [TBL] [Abstract][Full Text] [Related]
10. Ontogeny of catecholamine-synthesizing enzymes and enkephalins in the sheep adrenal medulla: an immunocytochemical study. McMillen IC; Mulvogue HM; Coulter CL; Browne CA; Howe PR J Endocrinol; 1988 Aug; 118(2):221-6. PubMed ID: 3171466 [TBL] [Abstract][Full Text] [Related]
11. Ganglion cells immunoreactive for catecholamine-synthesizing enzymes, neuropeptide Y and vasoactive intestinal polypeptide in the rat adrenal gland. Oomori Y; Okuno S; Fujisawa H; Iuchi H; Ishikawa K; Satoh Y; Ono K Cell Tissue Res; 1994 Feb; 275(2):201-13. PubMed ID: 7906614 [TBL] [Abstract][Full Text] [Related]
12. Immunohistochemical localization of catecholamine biosynthetic enzymes in the adrenal gland of the domestic fowl (Gallus domesticus). Kober AK; Aoyama M; Sugita S Poult Sci; 2010 Aug; 89(8):1709-15. PubMed ID: 20634527 [TBL] [Abstract][Full Text] [Related]
13. The determination of the adrenal medullary cell fate during embryogenesis. Seidl K; Unsicker K Dev Biol; 1989 Dec; 136(2):481-90. PubMed ID: 2573552 [TBL] [Abstract][Full Text] [Related]
14. Effects of antibodies against acetylcholinesterase on the expression of peptides and catecholamine synthesizing enzymes in the rat adrenal gland. Dagerlind A; Brimijoin S; Goldstein M; Hökfelt T Neuroscience; 1993 Jun; 54(4):1079-90. PubMed ID: 8101982 [TBL] [Abstract][Full Text] [Related]
15. Age-related changes of dopamine, noradrenaline and adrenaline in adrenal glands of mice. Amano A; Tsunoda M; Aigaki T; Maruyama N; Ishigami A Geriatr Gerontol Int; 2013 Apr; 13(2):490-6. PubMed ID: 22934574 [TBL] [Abstract][Full Text] [Related]
16. Distributions of tyrosine hydroxylase-, dopamine-beta-hydroxylase-, and phenylethanolamine-N-methyltransferase-immunoreactive neurons in the brain of the hamster (Mesocricetus auratus). Vincent SR J Comp Neurol; 1988 Feb; 268(4):584-99. PubMed ID: 2895779 [TBL] [Abstract][Full Text] [Related]
17. Different roles for the pituitary and adrenal cortex in the control of enkephalin peptide localization and cortico-medullary interaction in the sheep adrenal during development. Coulter CL; Young IR; Browne CA; McMillen IC Neuroendocrinology; 1991 Mar; 53(3):281-6. PubMed ID: 1645853 [TBL] [Abstract][Full Text] [Related]
18. Immunocytochemical localization of tyrosine hydroxylase, dopamine-beta-hydroxylase and phenylethanolamine-N-methyltransferase in the adrenal glands of the frog and rat by a peroxidase-antiperoxidase method. Nagatsu I; Karasawa N; Kondo Y; Inagaki S Histochemistry; 1979 Nov; 64(2):131-44. PubMed ID: 43302 [TBL] [Abstract][Full Text] [Related]
19. Catecholamine-synthesizing neuronal projections to the nucleus tractus solitarii of the rat. Thor KB; Helke CJ J Comp Neurol; 1988 Feb; 268(2):264-80. PubMed ID: 3360988 [TBL] [Abstract][Full Text] [Related]
20. Enkephalin- and somatostatin-like immunoreactivities in human adrenal medulla and pheochromocytoma. Lundberg JM; Hamberger B; Schultzberg M; Hökfelt T; Granberg PO; Efendić S; Terenius L; Goldstein M; Luft R Proc Natl Acad Sci U S A; 1979 Aug; 76(8):4079-83. PubMed ID: 386355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]