These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39022787)

  • 1.
    Hu L; Chen X; Cao Y; Gao P; Xu T; Xiong D; Zhao Z
    Food Chem X; 2024 Oct; 23():101575. PubMed ID: 39022787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality Improvement in Apple Ciders during Simultaneous Co-Fermentation through Triple Mixed-Cultures of
    Hu L; Chen X; Lin R; Xu T; Xiong D; Li L; Zhao Z
    Foods; 2023 Feb; 12(3):. PubMed ID: 36766182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonconventional yeasts and hybrids for low temperature handcrafted sparkling ciders elaboration in Patagonia.
    González Flores M; Origone AC; Rodríguez ME; Lopes CA
    Int J Food Microbiol; 2024 Feb; 412():110566. PubMed ID: 38241754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of chemical composition and sensorial properties of ciders fermented with different non-Saccharomyces yeasts in pure and mixed fermentations.
    Wei J; Zhang Y; Wang Y; Ju H; Niu C; Song Z; Yuan Y; Yue T
    Int J Food Microbiol; 2020 Apr; 318():108471. PubMed ID: 31841786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of controlled inoculation of malolactic fermentation on the sensory properties of industrial cider.
    Sánchez A; de Revel G; Antalick G; Herrero M; García LA; Díaz M
    J Ind Microbiol Biotechnol; 2014 May; 41(5):853-67. PubMed ID: 24633582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of indigenous
    Zhang B; Liu D; Liu H; Shen J; Zhang J; He L; Li J; Zhou P; Guan X; Liu S; Shi K
    Food Chem X; 2024 Jun; 22():101369. PubMed ID: 38633743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders.
    Laaksonen O; Kuldjärv R; Paalme T; Virkki M; Yang B
    Food Chem; 2017 Oct; 233():29-37. PubMed ID: 28530577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on management of malolactic fermentation.
    Russo P; Englezos V; Capozzi V; Pollon M; Río Segade S; Rantsiou K; Spano G; Cocolin L
    Food Res Int; 2020 Aug; 134():109246. PubMed ID: 32517918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Metagenomic-Based Approach for the Characterization of Bacterial Diversity Associated with Spontaneous Malolactic Fermentations in Wine.
    Berbegal C; Borruso L; Fragasso M; Tufariello M; Russo P; Brusetti L; Spano G; Capozzi V
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31443334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of chemical constituents of lychee wine by simultaneous alcoholic and malolactic fermentations.
    Chen D; Liu SQ
    Food Chem; 2016 Apr; 196():988-95. PubMed ID: 26593581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mixed species alcoholic fermentation on growth and malolactic activity of lactic acid bacteria.
    Englezos V; Cachón DC; Rantsiou K; Blanco P; Petrozziello M; Pollon M; Giacosa S; Río Segade S; Rolle L; Cocolin L
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7687-7702. PubMed ID: 31388732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of the effect of bacteria and yeasts communities on inoculated and spontaneously fermented apple cider.
    Han Y; Du J
    Food Microbiol; 2023 May; 111():104195. PubMed ID: 36681399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomic analysis of the effects of a mixed culture of
    Li YN; Luo Y; Lu ZM; Dong YL; Chai LJ; Shi JS; Zhang XJ; Xu ZH
    Front Nutr; 2023; 10():1142517. PubMed ID: 36998906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sequential mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on apple cider fermentation.
    Ye M; Yue T; Yuan Y
    FEMS Yeast Res; 2014 Sep; 14(6):873-82. PubMed ID: 24931623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of
    Zhang BQ; Luan Y; Duan CQ; Yan GL
    Front Microbiol; 2018; 9():606. PubMed ID: 29674999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of alcoholic and malolactic fermentations in highly acidic and phenolic apple musts.
    del Campo G; Berregi I; Santos JI; Dueñas M; Irastorza A
    Bioresour Technol; 2008 May; 99(8):2857-63. PubMed ID: 17706419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni.
    Lu Y; Chua JY; Huang D; Lee PR; Liu SQ
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8877-88. PubMed ID: 27405438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brewing of glucuronic acid-enriched apple cider with enhanced antioxidant activities through the co-fermentation of yeast (
    Li Y; Nguyen TTH; Jin J; Lim J; Lee J; Piao M; Mok IK; Kim D
    Food Sci Biotechnol; 2021 Apr; 30(4):555-564. PubMed ID: 33936847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malolactic fermentation as a technique for the deacidification of hard apple cider.
    Reuss RM; Stratton JE; Smith DA; Read PE; Cuppett SL; Parkhurst AM
    J Food Sci; 2010; 75(1):C74-8. PubMed ID: 20492153
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Kristof I; Ledesma SC; Apud GR; Vera NR; Aredes Fernández PA
    Heliyon; 2023 Jun; 9(6):e16806. PubMed ID: 37332959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.