These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Possible Excitonic Insulating Phase in Quantum-Confined Sb Nanoflakes. Li Z; Nadeem M; Yue Z; Cortie D; Fuhrer M; Wang X Nano Lett; 2019 Aug; 19(8):4960-4964. PubMed ID: 31290676 [TBL] [Abstract][Full Text] [Related]
6. Antiferromagnetic excitonic insulator state in Sr Mazzone DG; Shen Y; Suwa H; Fabbris G; Yang J; Zhang SS; Miao H; Sears J; Jia K; Shi YG; Upton MH; Casa DM; Liu X; Liu J; Batista CD; Dean MPM Nat Commun; 2022 Feb; 13(1):913. PubMed ID: 35177583 [TBL] [Abstract][Full Text] [Related]
7. Prediction of a topological p + ip excitonic insulator with parity anomaly. Wang R; Erten O; Wang B; Xing DY Nat Commun; 2019 Jan; 10(1):210. PubMed ID: 30643119 [TBL] [Abstract][Full Text] [Related]
8. High-Temperature Excitonic Condensation in 2D Lattice. Xu Y; Wang Y; Yu S; Sun D; Dai Y; Huang B; Wei W Adv Sci (Weinh); 2024 Sep; ():e2404436. PubMed ID: 39239846 [TBL] [Abstract][Full Text] [Related]
9. Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus. Zheng B; Wang J; Wang Q; Su X; Huang T; Li S; Wang F; Shi Y; Wang X Nat Commun; 2022 Dec; 13(1):7797. PubMed ID: 36528720 [TBL] [Abstract][Full Text] [Related]
10. Signatures of the exciton gas phase and its condensation in monolayer 1T-ZrTe Song Y; Jia C; Xiong H; Wang B; Jiang Z; Huang K; Hwang J; Li Z; Hwang C; Liu Z; Shen D; Sobota JA; Kirchmann P; Xue J; Devereaux TP; Mo SK; Shen ZX; Tang S Nat Commun; 2023 Feb; 14(1):1116. PubMed ID: 36849499 [TBL] [Abstract][Full Text] [Related]
11. A Gate-Tunable Ambipolar Quantum Phase Transition in a Topological Excitonic Insulator. Que Y; Chan YH; Jia J; Das A; Tong Z; Chang YT; Cui Z; Kumar A; Singh G; Mukherjee S; Lin H; Weber B Adv Mater; 2024 Feb; 36(7):e2309356. PubMed ID: 38010877 [TBL] [Abstract][Full Text] [Related]
12. Surface Doping and Dual Nature of the Band Gap in Excitonic Insulator Ta Lee S; Jin KH; Jung H; Fukutani K; Lee J; Kwon CI; Kim JS; Kim J; Yeom HW ACS Nano; 2024 Sep; 18(36):24784-24791. PubMed ID: 39178330 [TBL] [Abstract][Full Text] [Related]
13. Critical point for Bose-Einstein condensation of excitons in graphite. Wang J; Nie P; Li X; Zuo H; Fauqué B; Zhu Z; Behnia K Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30215-30219. PubMed ID: 33199600 [TBL] [Abstract][Full Text] [Related]
14. Heterobilayers of 2D materials as a platform for excitonic superfluidity. Gupta S; Kutana A; Yakobson BI Nat Commun; 2020 Jun; 11(1):2989. PubMed ID: 32533022 [TBL] [Abstract][Full Text] [Related]
15. Importance of excitonic effect in charge separation at quantum-dot/organic interface: first-principles many-body calculations. Lee D; DuBois JL; Kanai Y Nano Lett; 2014 Dec; 14(12):6884-8. PubMed ID: 25388898 [TBL] [Abstract][Full Text] [Related]
17. Half-Excitonic Insulator: A Single-Spin Bose-Einstein Condensate. Jiang Z; Li Y; Duan W; Zhang S Phys Rev Lett; 2019 Jun; 122(23):236402. PubMed ID: 31298916 [TBL] [Abstract][Full Text] [Related]
18. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis. Wang H; Liu W; He X; Zhang P; Zhang X; Xie Y J Am Chem Soc; 2020 Aug; 142(33):14007-14022. PubMed ID: 32702981 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures. Qi R; Joe AY; Zhang Z; Zeng Y; Zheng T; Feng Q; Xie J; Regan E; Lu Z; Taniguchi T; Watanabe K; Tongay S; Crommie MF; MacDonald AH; Wang F Nat Commun; 2023 Dec; 14(1):8264. PubMed ID: 38092731 [TBL] [Abstract][Full Text] [Related]
20. A monolayer transition-metal dichalcogenide as a topological excitonic insulator. Varsano D; Palummo M; Molinari E; Rontani M Nat Nanotechnol; 2020 May; 15(5):367-372. PubMed ID: 32123382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]