These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39023229)

  • 1. Can Current Molecular Docking Methods Accurately Predict RNA Inhibitors?
    Gunasinghe KKJ; Ginjom IRH; San HS; Rahman T; Wezen XC
    J Chem Inf Model; 2024 Aug; 64(15):5954-5963. PubMed ID: 39023229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Assessment of Docking Programs for Docking and Virtual Screening of Ribosomal Oxazolidinone Antibacterial Agents.
    Buckley ME; Ndukwe ARN; Nair PC; Rana S; Fairfull-Smith KE; Gandhi NS
    Antibiotics (Basel); 2023 Feb; 12(3):. PubMed ID: 36978331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RLDOCK method for predicting RNA-small molecule binding modes.
    Jiang Y; Chen SJ
    Methods; 2022 Jan; 197():97-105. PubMed ID: 33549725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Assessment of Pose Prediction Accuracy in RNA-Ligand Docking.
    Agarwal R; T RR; Smith JC
    J Chem Inf Model; 2023 Dec; 63(23):7444-7452. PubMed ID: 37972310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions.
    Kumar SP
    J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations.
    Guterres H; Im W
    J Chem Inf Model; 2020 Apr; 60(4):2189-2198. PubMed ID: 32227880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes.
    Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY
    Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Good Are Current Docking Programs at Nucleic Acid-Ligand Docking? A Comprehensive Evaluation.
    Jiang D; Zhao H; Du H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wu J; Hsieh CY; Hou T
    J Chem Theory Comput; 2023 Aug; 19(16):5633-5647. PubMed ID: 37480347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function.
    Wang Z; Zheng L; Wang S; Lin M; Wang Z; Kong AW; Mu Y; Wei Y; Li W
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarked molecular docking integrated molecular dynamics stability analysis for prediction of SARS-CoV-2 papain-like protease inhibition by olive secoiridoids.
    Thangavel N; Albratty M
    J King Saud Univ Sci; 2023 Jan; 35(1):102402. PubMed ID: 36338939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards predictive docking at aminergic G-protein coupled receptors.
    Jakubík J; El-Fakahany EE; Doležal V
    J Mol Model; 2015 Nov; 21(11):284. PubMed ID: 26453085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening.
    Tai HK; Jusoh SA; Siu SWI
    J Cheminform; 2018 Dec; 10(1):62. PubMed ID: 30552524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RLDOCK: A New Method for Predicting RNA-Ligand Interactions.
    Sun LZ; Jiang Y; Zhou Y; Chen SJ
    J Chem Theory Comput; 2020 Nov; 16(11):7173-7183. PubMed ID: 33095555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based pose prediction: Non-cognate docking extended to macrocyclic ligands.
    Cleves AE; Tandon H; Jain AN
    J Comput Aided Mol Des; 2024 Oct; 38(1):33. PubMed ID: 39414633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consensus docking: improving the reliability of docking in a virtual screening context.
    Houston DR; Walkinshaw MD
    J Chem Inf Model; 2013 Feb; 53(2):384-90. PubMed ID: 23351099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RmsdXNA: RMSD prediction of nucleic acid-ligand docking poses using machine-learning method.
    Tan LH; Kwoh CK; Mu Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38695120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets.
    Xu W; Lucke AJ; Fairlie DP
    J Mol Graph Model; 2015 Apr; 57():76-88. PubMed ID: 25682361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.