These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39023513)

  • 21. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.
    Yoneyama F; Yamamoto M; Hashimoto W; Murata K
    Bioengineered; 2015; 6(4):209-17. PubMed ID: 25880041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli.
    Takimoto R; Tatemichi Y; Aoki W; Kosaka Y; Minakuchi H; Ueda M; Kuroda K
    Sci Rep; 2022 Mar; 12(1):4182. PubMed ID: 35264690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between paralogous bacterial enhancer-binding proteins enable metal-dependent regulation of alternative nitrogenases in Azotobacter vinelandii.
    Appia-Ayme C; Little R; Chandra G; de Oliveira Martins C; Bueno Batista M; Dixon R
    Mol Microbiol; 2022 Jul; 118(1-2):105-124. PubMed ID: 35718936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A quantitative model of nitrogen fixation in the presence of ammonium.
    Inomura K; Bragg J; Riemann L; Follows MJ
    PLoS One; 2018; 13(11):e0208282. PubMed ID: 30496286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Azotobacters as biofertilizer.
    Das HK
    Adv Appl Microbiol; 2019; 108():1-43. PubMed ID: 31495403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo.
    Moshiri F; Kim JW; Fu C; Maier RJ
    Mol Microbiol; 1994 Oct; 14(1):101-14. PubMed ID: 7830548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molybdenum trafficking for nitrogen fixation.
    Hernandez JA; George SJ; Rubio LM
    Biochemistry; 2009 Oct; 48(41):9711-21. PubMed ID: 19772354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive fitness and stability of ammonium-excreting Azotobacter vinelandii strains in the soil.
    Ambrosio R; Burgos Herrera G; Do Nascimento M; Pagnussat LA; Curatti L
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):378. PubMed ID: 38888816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Mechanism and Agricultural Application of the NifA-NifL System for Nitrogen Fixation.
    Zhang W; Chen Y; Huang K; Wang F; Mei Z
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a spontaneous mutant of Azotobacter vinelandii in which vanadium-dependent nitrogen fixation is not inhibited by molybdenum.
    Bageshwar UK; Raina R; Das HK
    FEMS Microbiol Lett; 1998 May; 162(1):161-7. PubMed ID: 9595678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in
    Martin Del Campo JS; Rigsbee J; Bueno Batista M; Mus F; Rubio LM; Einsle O; Peters JW; Dixon R; Dean DR; Dos Santos PC
    Crit Rev Biochem Mol Biol; 2022; 57(5-6):492-538. PubMed ID: 36877487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A CRISPR interference system for engineering biological nitrogen fixation.
    Russell SJ; Garcia AK; Kaçar B
    mSystems; 2024 Mar; 9(3):e0015524. PubMed ID: 38376168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-beta-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii.
    Segura D; Espín G
    J Bacteriol; 1998 Sep; 180(18):4790-8. PubMed ID: 9733679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories.
    Ortiz-Marquez JC; Do Nascimento M; Curatti L
    Metab Eng; 2014 May; 23():154-64. PubMed ID: 24680860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving glucose and xylose assimilation in Azotobacter vinelandii by adaptive laboratory evolution.
    Millán C; Peña C; Flores C; Espín G; Galindo E; Castillo T
    World J Microbiol Biotechnol; 2020 Mar; 36(3):46. PubMed ID: 32140791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii.
    Blanco G; Drummond M; Woodley P; Kennedy C
    Mol Microbiol; 1993 Aug; 9(4):869-79. PubMed ID: 8231815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional activation of the Azotobacter vinelandii polyhydroxybutyrate biosynthetic genes phbBAC by PhbR and RpoS.
    Hernandez-Eligio A; Castellanos M; Moreno S; Espín G
    Microbiology (Reading); 2011 Nov; 157(Pt 11):3014-3023. PubMed ID: 21778206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated Laboratory Growth Assessment and Maintenance of Azotobacter vinelandii.
    Carruthers BM; Garcia AK; Rivier A; Kacar B
    Curr Protoc; 2021 Mar; 1(3):e57. PubMed ID: 33656286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redundancy of the conserved His residue in Azotobacter vinelandii NifL, a histidine autokinase homologue which regulates transcription of nitrogen fixation genes.
    Woodley P; Drummond M
    Mol Microbiol; 1994 Aug; 13(4):619-26. PubMed ID: 7997174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii.
    Curatti L; Brown CS; Ludden PW; Rubio LM
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6291-6. PubMed ID: 15845763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.