These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 39024387)

  • 1. Characterization of rigid open-cell foams using direct ultrasonic simulation.
    Sachan S; Ramamoorthy S
    J Acoust Soc Am; 2024 Jul; 156(1):534-547. PubMed ID: 39024387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients.
    Groby JP; Ogam E; De Ryck L; Sebaa N; Lauriks W
    J Acoust Soc Am; 2010 Feb; 127(2):764-72. PubMed ID: 20136199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous material characterization--ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber.
    Moussatov A; Ayrault C; Castagnède B
    Ultrasonics; 2001 Apr; 39(3):195-202. PubMed ID: 11350000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray Computed Tomography for Characterization of Expanded Polystyrene (EPS) Foam.
    Meftah R; Van Stappen J; Berger S; Jacqus G; Laluet JY; Guering PH; Van Hoorebeke L; Cnudde V
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving acoustic wave propagation models in highly attenuating porous materials.
    Bouchendouka A; Fellah ZEA; Nguyen CT; Ogam E; Perrot C; Duval A; Depollier C
    J Acoust Soc Am; 2024 Jan; 155(1):206-217. PubMed ID: 38180154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the irregular microgeometry of polyurethane foam on the macroscopic acoustic behavior predicted by a unit-cell model.
    Doutres O; Ouisse M; Atalla N; Ichchou M
    J Acoust Soc Am; 2014 Oct; 136(4):1666-81. PubMed ID: 25324070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves.
    Fellah ZE; Depollier C; Berger S; Lauriks W; Trompette P; Chapelon JY
    J Acoust Soc Am; 2003 Nov; 114(5):2561-9. PubMed ID: 14649992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of compressed earth blocks using low frequency guided acoustic waves.
    Ben Mansour M; Ogam E; Fellah ZE; Soukaina Cherif A; Jelidi A; Ben Jabrallah S
    J Acoust Soc Am; 2016 May; 139(5):2551. PubMed ID: 27250150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence.
    Fellah ZE; Berger S; Lauriks W; Depollier C; Aristégui C; Chapelon JY
    J Acoust Soc Am; 2003 May; 113(5):2424-33. PubMed ID: 12765361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic measurement and statistical characterization of direct-printed, variable-porosity aluminum foams.
    Konarski SG; Rohde CA; Gotoh R; Roberts SN; Naify CJ
    J Acoust Soc Am; 2021 Jun; 149(6):4327. PubMed ID: 34241492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.
    Groby JP; Brouard B; Dazel O; Nennig B; Kelders L
    J Acoust Soc Am; 2013 Feb; 133(2):821-31. PubMed ID: 23363101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material.
    Fellah ZE; Fellah M; Lauriks W; Depollier C
    J Acoust Soc Am; 2003 Jan; 113(1):61-72. PubMed ID: 12558247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure-based modeling to characterize low pore density open-cell foams and its experimental validation.
    Sachan S; Ramamoorthy S
    J Acoust Soc Am; 2024 Jan; 155(1):188-205. PubMed ID: 38180151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements.
    Niskanen M; Groby JP; Duclos A; Dazel O; Le Roux JC; Poulain N; Huttunen T; Lähivaara T
    J Acoust Soc Am; 2017 Oct; 142(4):2407. PubMed ID: 29092615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models.
    Leclaire P; Kelders L; Lauriks W; Glorieux C; Thoen J
    Stud Health Technol Inform; 1997; 40():139-55. PubMed ID: 10168875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths.
    Horoshenkov KV; Groby JP; Dazel O
    J Acoust Soc Am; 2016 May; 139(5):2463. PubMed ID: 27250142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study.
    Langlois V; Kaddami A; Pitois O; Perrot C
    J Acoust Soc Am; 2020 Sep; 148(3):1767. PubMed ID: 33003872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-parameter analytical model for the acoustical properties of porous media.
    Horoshenkov KV; Hurrell A; Groby JP
    J Acoust Soc Am; 2019 Apr; 145(4):2512. PubMed ID: 31046383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements and empirical model of the acoustic properties of reticulated vitreous carbon.
    Muehleisena RT; Beamer CW; Tinianov BD
    J Acoust Soc Am; 2005 Feb; 117(2):536-44. PubMed ID: 15759675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.