These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39024645)
21. Silver vacancy concentration engineering leading to the ultralow lattice thermal conductivity and improved thermoelectric performance of Ag Zhong Y; Luo Y; Li X; Cui J Sci Rep; 2019 Dec; 9(1):18879. PubMed ID: 31827201 [TBL] [Abstract][Full Text] [Related]
22. Synergetic Optimization of Electrical and Thermal Transport Properties by Cu Vacancies and Nanopores in Cu Zhao X; Ning S; Qi N; Li Y; Dong Y; Zhang H; Liu J; Ye B; Chen Z ACS Appl Mater Interfaces; 2021 Dec; 13(49):58936-58948. PubMed ID: 34870964 [TBL] [Abstract][Full Text] [Related]
23. Realizing High Thermoelectric Performance in Sb-Doped Ag Zhu T; Bai H; Zhang J; Tan G; Yan Y; Liu W; Su X; Wu J; Zhang Q; Tang X ACS Appl Mater Interfaces; 2020 Sep; 12(35):39425-39433. PubMed ID: 32805902 [TBL] [Abstract][Full Text] [Related]
24. Dual Vacancies: An Effective Strategy Realizing Synergistic Optimization of Thermoelectric Property in BiCuSeO. Li Z; Xiao C; Fan S; Deng Y; Zhang W; Ye B; Xie Y J Am Chem Soc; 2015 May; 137(20):6587-93. PubMed ID: 25927811 [TBL] [Abstract][Full Text] [Related]
25. High-Power Factor Enabled by Efficient Manipulation Interaxial Angle for Enhancing Thermoelectrics of GeTe-Cu Tan X; Zhang F; Zhu J; Xu F; Li R; He S; Rao X; Ang R ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763976 [TBL] [Abstract][Full Text] [Related]
26. Regulating Te Vacancies through Dopant Balancing via Excess Ag Enables Rebounding Power Factor and High Thermoelectric Performance in p-Type PbTe. Jang H; Park JH; Lee HS; Ryu B; Park SD; Ju HA; Yang SH; Kim YM; Nam WH; Wang H; Male J; Snyder GJ; Kim M; Jung YS; Oh MW Adv Sci (Weinh); 2021 Oct; 8(20):e2100895. PubMed ID: 34390224 [TBL] [Abstract][Full Text] [Related]
27. Defect Compensation Weakening Induced Mobility Enhancement in Thermoelectric BiTeI by Iodine Deficiency. Li Z; Zhao C; Xiao C Chem Asian J; 2020 Dec; 15(23):4124-4129. PubMed ID: 33151029 [TBL] [Abstract][Full Text] [Related]
28. Realization of an ultra-low lattice thermal conductivity in Bi Vijay V; Harish S; Archana J; Navaneethan M J Colloid Interface Sci; 2023 May; 637():340-353. PubMed ID: 36709591 [TBL] [Abstract][Full Text] [Related]
29. Controlling the Thermoelectric Properties of Nb-Doped TiO Liu X; Kepaptsoglou D; Gao Z; Thomas A; Maji K; Guilmeau E; Azough F; Ramasse QM; Freer R ACS Appl Mater Interfaces; 2021 Dec; 13(48):57326-57340. PubMed ID: 34844406 [TBL] [Abstract][Full Text] [Related]
30. High Thermoelectric Performance in Chalcopyrite Cu Xie H; Liu Y; Zhang Y; Hao S; Li Z; Cheng M; Cai S; Snyder GJ; Wolverton C; Uher C; Dravid VP; Kanatzidis MG J Am Chem Soc; 2022 May; 144(20):9113-9125. PubMed ID: 35537206 [TBL] [Abstract][Full Text] [Related]
31. Bi Wu G; Zhang Q; Tan X; Fu Y; Guo Z; Zhang Z; Sun Q; Liu Y; Shi H; Li J; Noudem JG; Wu J; Liu GQ; Sun P; Hu H; Jiang J Adv Mater; 2024 Jun; 36(26):e2400285. PubMed ID: 38613131 [TBL] [Abstract][Full Text] [Related]
32. Facile fabrication of one-dimensional Te/Cu Park D; Ju H; Oh T; Kim J Sci Rep; 2018 Dec; 8(1):18082. PubMed ID: 30584252 [TBL] [Abstract][Full Text] [Related]
33. Scattering Mechanisms and Suppression of Bipolar Diffusion Effect in Bi Kim JH; Back SY; Yun JH; Lee HS; Rhyee JS Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33810161 [TBL] [Abstract][Full Text] [Related]
34. High Thermoelectric Performance of Bi Zhang D; Wang J; Zhang L; Lei J; Ma Z; Wang C; Guan W; Cheng Z; Wang Y ACS Appl Mater Interfaces; 2019 Oct; 11(40):36658-36665. PubMed ID: 31483591 [TBL] [Abstract][Full Text] [Related]
36. Manipulating Localized Vibrations of Interstitial Te for Ultra-High Thermoelectric Efficiency in p-Type Cu-In-Te Systems. Ren T; Han Z; Ying P; Li X; Li X; Lin X; Sarker D; Cui J ACS Appl Mater Interfaces; 2019 Sep; 11(35):32192-32199. PubMed ID: 31442031 [TBL] [Abstract][Full Text] [Related]
37. Phonon transport in vacancy induced defective stanene/hBN van der Waals heterostructure. Hassan M; Das P; Paul P; Morshed AM; Paul TC Nanotechnology; 2024 Aug; 35(43):. PubMed ID: 39053488 [TBL] [Abstract][Full Text] [Related]
38. Achieving Enhanced Thermoelectric Performance in (SnTe) Liu X; Zhang B; Chen Y; Wu H; Wang H; Yang M; Wang G; Xu J; Zhou X; Han G ACS Appl Mater Interfaces; 2020 Oct; 12(40):44805-44814. PubMed ID: 32902958 [TBL] [Abstract][Full Text] [Related]
39. Role of Cation Vacancies in Cu Cheng X; Li Z; You Y; Zhu T; Yan Y; Su X; Tang X ACS Appl Mater Interfaces; 2019 Jul; 11(27):24212-24220. PubMed ID: 31251571 [TBL] [Abstract][Full Text] [Related]
40. Simultaneously Boosting Thermoelectric and Mechanical Properties of n-Type Mg Yu L; Shi XL; Mao Y; Liu WD; Ji Z; Wei S; Zhang Z; Song W; Zheng S; Chen ZG ACS Nano; 2024 Jan; 18(2):1678-1689. PubMed ID: 38164927 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]