These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 39024904)

  • 1. A dual-encoder double concatenation Y-shape network for precise volumetric liver and lesion segmentation.
    d'Albenzio G; Kamkova Y; Naseem R; Ullah M; Colonnese S; Cheikh FA; Kumar RP
    Comput Biol Med; 2024 Sep; 179():108870. PubMed ID: 39024904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S2DA-Net: Spatial and spectral-learning double-branch aggregation network for liver tumor segmentation in CT images.
    Liu H; Yang J; Jiang C; He S; Fu Y; Zhang S; Hu X; Fang J; Ji W
    Comput Biol Med; 2024 May; 174():108400. PubMed ID: 38613888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RMS-UNet: Residual multi-scale UNet for liver and lesion segmentation.
    Khan RA; Luo Y; Wu FX
    Artif Intell Med; 2022 Feb; 124():102231. PubMed ID: 35115126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks.
    Ouhmich F; Agnus V; Noblet V; Heitz F; Pessaux P
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1275-1284. PubMed ID: 31041697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic and portal vein segmentation with dual-stream deep neural network.
    Xu J; Jiang W; Wu J; Zhang W; Zhu Z; Xin J; Zheng N; Wang B
    Med Phys; 2024 Aug; 51(8):5441-5456. PubMed ID: 38648676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TD-Net: A Hybrid End-to-End Network for Automatic Liver Tumor Segmentation From CT Images.
    Di S; Zhao YQ; Liao M; Zhang F; Li X
    IEEE J Biomed Health Inform; 2023 Mar; 27(3):1163-1172. PubMed ID: 35696476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation.
    Budak Ü; Guo Y; Tanyildizi E; Şengür A
    Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images.
    Kushnure DT; Talbar SN
    Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images.
    Xu Y; Cai M; Lin L; Zhang Y; Hu H; Peng Z; Zhang Q; Chen Q; Mao X; Iwamoto Y; Han XH; Chen YW; Tong R
    Med Phys; 2021 Jul; 48(7):3752-3766. PubMed ID: 33950526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MFA-Net: Multiple Feature Association Network for medical image segmentation.
    Li Z; Zhang N; Gong H; Qiu R; Zhang W
    Comput Biol Med; 2023 May; 158():106834. PubMed ID: 37003067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision.
    Yang S; Liang Y; Wu S; Sun P; Chen Z
    J Xray Sci Technol; 2024; 32(3):707-723. PubMed ID: 38552134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images.
    Seo H; Huang C; Bassenne M; Xiao R; Xing L
    IEEE Trans Med Imaging; 2020 May; 39(5):1316-1325. PubMed ID: 31634827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Densely Connected U-Net With Criss-Cross Attention for Automatic Liver Tumor Segmentation in CT Images.
    Li Q; Song H; Wei Z; Yang F; Fan J; Ai D; Lin Y; Yu X; Yang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3399-3410. PubMed ID: 35984790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT.
    Wang J; Zhang X; Guo L; Shi C; Tamura S
    Math Biosci Eng; 2023 Jan; 20(1):1297-1316. PubMed ID: 36650812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does non-COVID-19 lung lesion help? investigating transferability in COVID-19 CT image segmentation.
    Wang Y; Zhang Y; Liu Y; Tian J; Zhong C; Shi Z; Zhang Y; He Z
    Comput Methods Programs Biomed; 2021 Apr; 202():106004. PubMed ID: 33662804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Dynamic Context Encoder Network for Liver Tumor Segmentation.
    Liu J; Fang J; Jiang T; Zhou C; Shao L; Song Y
    Curr Med Imaging; 2024; 20():e15734056303257. PubMed ID: 38874025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RMAU-Net: Residual Multi-Scale Attention U-Net For liver and tumor segmentation in CT images.
    Jiang L; Ou J; Liu R; Zou Y; Xie T; Xiao H; Bai T
    Comput Biol Med; 2023 May; 158():106838. PubMed ID: 37030263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attention Connect Network for Liver Tumor Segmentation from CT and MRI Images.
    Shao J; Luan S; Ding Y; Xue X; Zhu B; Wei W
    Technol Cancer Res Treat; 2024; 23():15330338231219366. PubMed ID: 38179668
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.