These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39025022)
1. Novel PEI/Zein core-shell composite as mixed-mode stationary phase for high performance liquid chromatography. Shen Q; Tang C; Xu X; Liu G; Shao S; Yao W; Dong S J Chromatogr A; 2024 Aug; 1730():465159. PubMed ID: 39025022 [TBL] [Abstract][Full Text] [Related]
2. One-pot fabrication and evaluation of β-ketoenamine covalent organic frameworks@silica composite microspheres as reversed-phase/hydrophilic interaction mixed-mode stationary phase for high performance liquid chromatography. Xia Y; Wang L; Liu Y; Liu J; Bai Q J Chromatogr A; 2024 Aug; 1728():464998. PubMed ID: 38795423 [TBL] [Abstract][Full Text] [Related]
3. Facile fabrication of silica@covalent organic polymers core-shell composites as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase/ion-exchange chromatography. Chen J; Peng H; Zhang Z; Zhang Z; Ni R; Chen Y; Chen P; Peng J Talanta; 2021 Oct; 233():122524. PubMed ID: 34215027 [TBL] [Abstract][Full Text] [Related]
4. [One-pot synthesis of a poly(styrene-acrylic acid) copolymer-modified silica stationary phase and its applications in mixed-mode liquid chromatography]. Wang XQ; Cui J; Gu YM; Wang S; Zhou J; Wang SD Se Pu; 2023 Jul; 41(7):562-571. PubMed ID: 37387277 [TBL] [Abstract][Full Text] [Related]
5. Polyethyleneimine-functionalized carbon dots and their precursor co-immobilized on silica for hydrophilic interaction chromatography. Cai T; Zhang H; Chen J; Li Z; Qiu H J Chromatogr A; 2019 Jul; 1597():142-148. PubMed ID: 30922720 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of glucose-based covalent organic polymer coated silica as stationary phase for high-performance liquid chromatography. Gao L; Wang Y; Qin Y; Sun Y; He L; Zhang S; Zhao W J Chromatogr A; 2023 Mar; 1693():463876. PubMed ID: 36857980 [TBL] [Abstract][Full Text] [Related]
7. Preparation and retention mechanism study of graphene and graphene oxide bonded silica microspheres as stationary phases for high performance liquid chromatography. Zhang X; Chen S; Han Q; Ding M J Chromatogr A; 2013 Sep; 1307():135-43. PubMed ID: 23932030 [TBL] [Abstract][Full Text] [Related]
8. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography. Wu Q; Sun Y; Zhang X; Zhang X; Dong S; Qiu H; Wang L; Zhao L J Chromatogr A; 2017 Apr; 1492():61-69. PubMed ID: 28284766 [TBL] [Abstract][Full Text] [Related]
9. Comparing the separation performance of poly(ethyleneimine) embedded butyric and octanoic acid based chromatographic stationary phases. Yang Y; Zhou J; Liang Q; Dai X; Yang H; Wan M; Ou J; Liao M; Wang L J Chromatogr A; 2023 Sep; 1706():464268. PubMed ID: 37544237 [TBL] [Abstract][Full Text] [Related]
10. Non-conjugated flexible network for the functional design of silica-based stationary phase for mixed-mode liquid chromatography. Fan F; Lu X; Wang S; Liang X; Wang L; Guo Y Talanta; 2021 Oct; 233():122548. PubMed ID: 34215051 [TBL] [Abstract][Full Text] [Related]
11. Monomer-mediated fabrication of microporous organic network@silica microsphere for reversed-phase/hydrophilic interaction mixed-mode chromatography. Sun HF; Cui YY; Zhen CQ; Yang CX Talanta; 2023 Jan; 251():123763. PubMed ID: 35932636 [TBL] [Abstract][Full Text] [Related]
12. A hyperbranched polyethylenimine functionalized stationary phase for hydrophilic interaction liquid chromatography. Peng Y; Hou Y; Zhang F; Shen G; Yang B Anal Bioanal Chem; 2016 May; 408(13):3633-8. PubMed ID: 26970747 [TBL] [Abstract][Full Text] [Related]
13. An alternative strategy to construct uniform MOFs-Grafted silica core-shell composites as mixed-mode stationary phase for chromatography separation. Si T; Wang S; Zhang H; Lu X; Wang L; Liang X; Guo Y Anal Chim Acta; 2021 Oct; 1183():338942. PubMed ID: 34627530 [TBL] [Abstract][Full Text] [Related]
14. [Preparation and chromatographic performance of cardanol-bonded silica stationary phase]. Zeng L; Jiang L; Yao X; Wang T; Shi B; Lei F Se Pu; 2022 Jun; 40(6):547-555. PubMed ID: 35616200 [TBL] [Abstract][Full Text] [Related]
15. Click postsynthesis of microporous organic network@silica composites for reversed-phase/hydrophilic interaction mixed-mode chromatography. Sun HF; Cui YY; Li HL; Yang CX Anal Bioanal Chem; 2023 Jul; 415(18):4533-4543. PubMed ID: 37017725 [TBL] [Abstract][Full Text] [Related]
16. Preparation and evaluation of a reversed-phase/hydrophilic interaction/ion-exchange mixed-mode chromatographic stationary phase functionalized with dopamine-based dendrimers. Zhou D; Zeng J; Fu Q; Gao D; Zhang K; Ren X; Zhou K; Xia Z; Wang L J Chromatogr A; 2018 Oct; 1571():165-175. PubMed ID: 30115386 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Aral H; Çelik KS; Altındağ R; Aral T Talanta; 2017 Nov; 174():703-714. PubMed ID: 28738646 [TBL] [Abstract][Full Text] [Related]
18. MOF-74@SiO Liu M; Jing Y; Zhang L; Zhou Y; Yan H; Song Y; Qiao X J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Jan; 1163():122506. PubMed ID: 33388523 [TBL] [Abstract][Full Text] [Related]
19. Preparation, characterization and application of a reversed phase liquid chromatography/hydrophilic interaction chromatography mixed-mode C18-DTT stationary phase. Wang Q; Long Y; Yao L; Xu L; Shi ZG; Xu L Talanta; 2016; 146():442-51. PubMed ID: 26695288 [TBL] [Abstract][Full Text] [Related]
20. Controlled Fabrication of Silica@Covalent Triazine Polymer Core-Shell Spheres as a Reversed-Phase/Hydrophilic Interaction Mixed-Mode Chromatographic Stationary Phase. Zuo H; Guo Y; Zhao W; Hu K; Wang X; He L; Zhang S ACS Appl Mater Interfaces; 2019 Dec; 11(49):46149-46156. PubMed ID: 31702125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]