These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The structure of a GH149 β-(1 → 3) glucan phosphorylase reveals a new surface oligosaccharide binding site and additional domains that are absent in the disaccharide-specific GH94 glucose-β-(1 → 3)-glucose (laminaribiose) phosphorylase. Kuhaudomlarp S; Stevenson CEM; Lawson DM; Field RA Proteins; 2019 Oct; 87(10):885-892. PubMed ID: 31134667 [TBL] [Abstract][Full Text] [Related]
3. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539 [TBL] [Abstract][Full Text] [Related]
5. Identification of Kuhaudomlarp S; Patron NJ; Henrissat B; Rejzek M; Saalbach G; Field RA J Biol Chem; 2018 Feb; 293(8):2865-2876. PubMed ID: 29317507 [TBL] [Abstract][Full Text] [Related]
6. Converting Bulk Sugars into Functional Fibers: Discovery and Application of a Thermostable β-1,3-Oligoglucan Phosphorylase. De Doncker M; Vleminckx S; Franceus J; Vercauteren R; Desmet T J Agric Food Chem; 2024 May; 72(18):10497-10505. PubMed ID: 38659290 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in enzymatic synthesis of β-glucan and cellulose. Bulmer GS; de Andrade P; Field RA; van Munster JM Carbohydr Res; 2021 Oct; 508():108411. PubMed ID: 34392134 [TBL] [Abstract][Full Text] [Related]
8. Molecular Recognition of Natural and Non-Natural Substrates by Cellodextrin Phosphorylase from Ruminiclostridium Thermocellum Investigated by NMR Spectroscopy. Gabrielli V; Muñoz-García JC; Pergolizzi G; de Andrade P; Khimyak YZ; Field RA; Angulo J Chemistry; 2021 Nov; 27(63):15688-15698. PubMed ID: 34436794 [TBL] [Abstract][Full Text] [Related]
9. β-Glucan phosphorylases in carbohydrate synthesis. Ubiparip Z; De Doncker M; Beerens K; Franceus J; Desmet T Appl Microbiol Biotechnol; 2021 May; 105(10):4073-4087. PubMed ID: 33970317 [TBL] [Abstract][Full Text] [Related]
11. Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases. Macdonald SS; Armstrong Z; Morgan-Lang C; Osowiecka M; Robinson K; Hallam SJ; Withers SG Cell Chem Biol; 2019 Jul; 26(7):1001-1012.e5. PubMed ID: 31080075 [TBL] [Abstract][Full Text] [Related]
12. Glycan Phosphorylases in Multi-Enzyme Synthetic Processes. Pergolizzi G; Kuhaudomlarp S; Kalita E; Field RA Protein Pept Lett; 2017; 24(8):696-709. PubMed ID: 28799504 [TBL] [Abstract][Full Text] [Related]
13. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library. Macdonald SS; Patel A; Larmour VLC; Morgan-Lang C; Hallam SJ; Mark BL; Withers SG J Biol Chem; 2018 Mar; 293(9):3451-3467. PubMed ID: 29317495 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of a novel GH94 glycoside phosphorylase, 3-O-β-d-glucopyranosyl β-d-glucuronide phosphorylase, and implication of the metabolic pathway of acidic carbohydrates in Paenibacillus borealis. Isono N; Mizutani E; Hayashida H; Katsuzaki H; Saburi W Biochem Biophys Res Commun; 2022 Oct; 625():60-65. PubMed ID: 35947916 [TBL] [Abstract][Full Text] [Related]
15. Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate. Bianchetti CM; Elsen NL; Fox BG; Phillips GN Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Nov; 67(Pt 11):1345-9. PubMed ID: 22102229 [TBL] [Abstract][Full Text] [Related]
16. Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families. Kuhaudomlarp S; Pergolizzi G; Patron NJ; Henrissat B; Field RA J Biol Chem; 2019 Apr; 294(16):6483-6493. PubMed ID: 30819804 [TBL] [Abstract][Full Text] [Related]
17. Recombinant production and biochemical characterization of a hyperthermostable alpha-glucan/maltodextrin phosphorylase from Pyrococcus furiosus. Mizanur RM; Griffin AK; Pohl NL Archaea; 2008 Dec; 2(3):169-76. PubMed ID: 19054743 [TBL] [Abstract][Full Text] [Related]
18. 1,2-β-Oligoglucan phosphorylase from Listeria innocua. Nakajima M; Toyoizumi H; Abe K; Nakai H; Taguchi H; Kitaoka M PLoS One; 2014; 9(3):e92353. PubMed ID: 24647662 [TBL] [Abstract][Full Text] [Related]
19. Preparative and Kinetic Analysis of β-1,4- and β-1,3-Glucan Phosphorylases Informs Access to Human Milk Oligosaccharide Fragments and Analogues Thereof. Singh RP; Pergolizzi G; Nepogodiev SA; de Andrade P; Kuhaudomlarp S; Field RA Chembiochem; 2020 Apr; 21(7):1043-1049. PubMed ID: 31657512 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars. Zhang YH; Lynd LR Appl Microbiol Biotechnol; 2006 Mar; 70(1):123-9. PubMed ID: 16402169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]