These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 39025573)

  • 1. Building complex membranes with Martini 3.
    Ozturk TN; König M; Carpenter TS; Pedersen KB; Wassenaar TA; Ingólfsson HI; Marrink SJ
    Methods Enzymol; 2024; 701():237-285. PubMed ID: 39025573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing lipid distributions and curvature in molecular dynamics simulations of complex membranes.
    Cino EA; Ramirez-Echemendia DP; Hu S; Tieleman DP
    Methods Enzymol; 2024; 701():579-601. PubMed ID: 39025583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry.
    Sharma S; Kim BN; Stansfeld PJ; Sansom MS; Lindau M
    PLoS One; 2015; 10(12):e0144814. PubMed ID: 26659855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addressing the Excessive Aggregation of Membrane Proteins in the MARTINI Model.
    Majumder A; Straub JE
    J Chem Theory Comput; 2021 Apr; 17(4):2513-2521. PubMed ID: 33720709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models.
    Cino EA; Tieleman DP
    Biophys J; 2022 Jun; 121(11):2060-2068. PubMed ID: 35524412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides.
    Hsu PC; Bruininks BMH; Jefferies D; Cesar Telles de Souza P; Lee J; Patel DS; Marrink SJ; Qi Y; Khalid S; Im W
    J Comput Chem; 2017 Oct; 38(27):2354-2363. PubMed ID: 28776689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent.
    Arnarez C; Uusitalo JJ; Masman MF; Ingólfsson HI; de Jong DH; Melo MN; Periole X; de Vries AH; Marrink SJ
    J Chem Theory Comput; 2015 Jan; 11(1):260-75. PubMed ID: 26574224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature Footprints of Transmembrane Proteins in Simulations with the Martini Force Field.
    Cino EA; Tieleman DP
    J Phys Chem B; 2024 Jun; 128(25):5987-5994. PubMed ID: 38860934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-induced membrane curvature in coarse-grained simulations.
    Mandal T; Spagnolie SE; Audhya A; Cui Q
    Biophys J; 2021 Aug; 120(15):3211-3221. PubMed ID: 34197798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating Coarse-Grained MARTINI Force-Fields for Capturing the Ripple Phase of Lipid Membranes.
    Sharma P; Desikan R; Ayappa KG
    J Phys Chem B; 2021 Jun; 125(24):6587-6599. PubMed ID: 34081861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
    Wang Y; Gkeka P; Fuchs JE; Liedl KR; Cournia Z
    Biochim Biophys Acta; 2016 Nov; 1858(11):2846-2857. PubMed ID: 27526680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulations Show That Short Peptides Can Drive Synthetic Cell Division by Binding to the Inner Membrane Leaflet.
    Steinkühler J; Lipowsky R; Miettinen MS
    J Phys Chem B; 2024 Sep; 128(36):8782-8787. PubMed ID: 39223874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulations of a heterogeneous membrane with enhanced sampling techniques.
    Cherniavskyi YK; Fathizadeh A; Elber R; Tieleman DP
    J Chem Phys; 2020 Oct; 153(14):144110. PubMed ID: 33086798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane stiffness is modified by integral membrane proteins.
    Fowler PW; Hélie J; Duncan A; Chavent M; Koldsø H; Sansom MS
    Soft Matter; 2016 Sep; 12(37):7792-7803. PubMed ID: 27722554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained force fields for molecular simulations.
    Barnoud J; Monticelli L
    Methods Mol Biol; 2015; 1215():125-49. PubMed ID: 25330962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing Biologically Complex Tissue-Specific Membranes at Different Levels of Compositional Complexity.
    Ingólfsson HI; Bhatia H; Zeppelin T; Bennett WFD; Carpenter KA; Hsu PC; Dharuman G; Bremer PT; Schiøtt B; Lightstone FC; Carpenter TS
    J Phys Chem B; 2020 Sep; 124(36):7819-7829. PubMed ID: 32790367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspective on the Martini model.
    Marrink SJ; Tieleman DP
    Chem Soc Rev; 2013 Aug; 42(16):6801-22. PubMed ID: 23708257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity.
    Pluhackova K; Horner A
    BMC Biol; 2021 Jan; 19(1):4. PubMed ID: 33441107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting lipid sorting in curved membranes.
    Crowley J; Hilpert C; Monticelli L
    Methods Enzymol; 2024; 701():287-307. PubMed ID: 39025574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Modeling of Realistic Cell Membranes.
    Marrink SJ; Corradi V; Souza PCT; Ingólfsson HI; Tieleman DP; Sansom MSP
    Chem Rev; 2019 May; 119(9):6184-6226. PubMed ID: 30623647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.