These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 39025891)

  • 1. Amplification of temperature extremes in Arabian Peninsula under warmer worlds.
    Vinodhkumar B; Ullah S; Kumar TVL; Al-Ghamdi SG
    Sci Rep; 2024 Jul; 14(1):16604. PubMed ID: 39025891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future changes in the precipitation regime over the Arabian Peninsula with special emphasis on UAE: insights from NEX-GDDP CMIP6 model simulations.
    Rao KK; Al Mandous A; Al Ebri M; Al Hameli N; Rakib M; Al Kaabi S
    Sci Rep; 2024 Jan; 14(1):151. PubMed ID: 38168514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projection of temperature extremes of Egypt using CMIP6 GCMs under multiple shared socioeconomic pathways.
    Hamed MM; Salehie O; Nashwan MS; Shahid S
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38063-38075. PubMed ID: 36576621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Observations and CMIP6 Simulations of Compound Extremes of Monthly Temperature and Precipitation.
    Wu Y; Miao C; Sun Y; AghaKouchak A; Shen C; Fan X
    Geohealth; 2021 May; 5(5):e2021GH000390. PubMed ID: 34027262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of historical CMIP6 model simulations and future projections of temperature over the Pan-Third Pole region.
    Fan X; Duan Q; Shen C; Wu Y; Xing C
    Environ Sci Pollut Res Int; 2022 Apr; 29(18):26214-26229. PubMed ID: 34851485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century.
    Iyakaremye V; Zeng G; Yang X; Zhang G; Ullah I; Gahigi A; Vuguziga F; Asfaw TG; Ayugi B
    Sci Total Environ; 2021 Oct; 790():148162. PubMed ID: 34102437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double increase in precipitation extremes across China in a 1.5 °C/2.0 °C warmer climate.
    Wang G; Zhang Q; Yu H; Shen Z; Sun P
    Sci Total Environ; 2020 Dec; 746():140807. PubMed ID: 32758983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts and socioeconomic exposures of global extreme precipitation events in 1.5 and 2.0 °C warmer climates.
    Shi X; Chen J; Gu L; Xu CY; Chen H; Zhang L
    Sci Total Environ; 2021 Apr; 766():142665. PubMed ID: 33131855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Historical global land surface air apparent temperature and its future changes based on CMIP6 projections.
    Huang J; Li Q; Song Z
    Sci Total Environ; 2022 Apr; 816():151656. PubMed ID: 34793798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5-3.0 °C warming levels using CMIP6-GCMs.
    Mondal SK; Tao H; Huang J; Wang Y; Su B; Zhai J; Jing C; Wen S; Jiang S; Chen Z; Jiang T
    Sci Total Environ; 2021 Oct; 789():147867. PubMed ID: 34052498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future projections of temperature-related indices in Prince Edward Island using ensemble average of three CMIP6 models.
    Maqsood J; Wang X; Farooque AA; Nawaz RA
    Sci Rep; 2024 Jun; 14(1):12661. PubMed ID: 38830965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projected urban exposure to extreme precipitation over South Asia.
    Mondal SK; Wang Y; Zhai J; Su B; Jiang S; Huang J; Jing C; Lin Q; Zhou J; Gao M; Jiang T
    Sci Total Environ; 2022 May; 822():153664. PubMed ID: 35124033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model.
    Betts RA; Alfieri L; Bradshaw C; Caesar J; Feyen L; Friedlingstein P; Gohar L; Koutroulis A; Lewis K; Morfopoulos C; Papadimitriou L; Richardson KJ; Tsanis I; Wyser K
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Future extreme climate changes linked to global warming intensity.
    Wang X; Jiang D; Lang X
    Sci Bull (Beijing); 2017 Dec; 62(24):1673-1680. PubMed ID: 36659388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate risks and vulnerabilities of the Arabica coffee in Brazil under current and future climates considering new CMIP6 models.
    Dias CG; Martins FB; Martins MA
    Sci Total Environ; 2024 Jan; 907():167753. PubMed ID: 37832692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Model Ensemble Projections of Winter Extreme Temperature Events on the Chinese Mainland.
    Yi X; Zou L; Niu Z; Jiang D; Cao Q
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of 1.5°C warming for the Great Barrier Reef.
    McWhorter JK; Halloran PR; Roff G; Skirving WJ; Perry CT; Mumby PJ
    Glob Chang Biol; 2022 Feb; 28(4):1332-1341. PubMed ID: 34783126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing future heat stress across China: combined effects of heat and relative humidity on mortality.
    Zhang G; Han L; Yao J; Yang J; Xu Z; Cai X; Huang J; Pei L
    Front Public Health; 2023; 11():1282497. PubMed ID: 37854241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projected climate extremes over agro-climatic zones of Ganga River Basin under 1.5, 2, and 3° global warming levels.
    Singh HV; Joshi N; Suryavanshi S
    Environ Monit Assess; 2023 Aug; 195(9):1062. PubMed ID: 37592096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution surface temperature changes for Portugal under CMIP6 future climate scenarios.
    Carvalho D
    Sci Rep; 2024 Jul; 14(1):17209. PubMed ID: 39060425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.