These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 39026540)

  • 1. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer.
    Li X; Li C; Wang H; Jiang L; Chen M
    PeerJ; 2024; 12():e17683. PubMed ID: 39026540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study.
    Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X
    Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set.
    Cain EH; Saha A; Harowicz MR; Marks JR; Marcom PK; Mazurowski MA
    Breast Cancer Res Treat; 2019 Jan; 173(2):455-463. PubMed ID: 30328048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer.
    Eun NL; Kang D; Son EJ; Park JS; Youk JH; Kim JA; Gweon HM
    Radiology; 2020 Jan; 294(1):31-41. PubMed ID: 31769740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study.
    Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR
    Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359
    [No Abstract]   [Full Text] [Related]  

  • 7. Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy.
    Liu HQ; Lin SY; Song YD; Mai SY; Yang YD; Chen K; Wu Z; Zhao HY
    Eur Radiol; 2023 Apr; 33(4):2965-2974. PubMed ID: 36418622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy.
    Sutton EJ; Onishi N; Fehr DA; Dashevsky BZ; Sadinski M; Pinker K; Martinez DF; Brogi E; Braunstein L; Razavi P; El-Tamer M; Sacchini V; Deasy JO; Morris EA; Veeraraghavan H
    Breast Cancer Res; 2020 May; 22(1):57. PubMed ID: 32466777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of machine learning models for predicting HER2-zero and HER2-low breast cancers.
    Huang X; Wu L; Liu Y; Xu Z; Liu C; Liu Z; Liang C
    Br J Radiol; 2024 Sep; 97(1161):1568-1576. PubMed ID: 38991838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis.
    Liang X; Yu X; Gao T
    Eur J Radiol; 2022 May; 150():110247. PubMed ID: 35290910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting pathological complete response to neoadjuvant chemotherapy in breast cancer patients: use of MRI radiomics data from three regions with multiple machine learning algorithms.
    Zheng G; Peng J; Shu Z; Jin H; Han L; Yuan Z; Qin X; Hou J; He X; Gong X
    J Cancer Res Clin Oncol; 2024 Mar; 150(3):147. PubMed ID: 38512406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach.
    Chen X; Li M; Su D
    Medicine (Baltimore); 2024 Aug; 103(33):e39343. PubMed ID: 39151526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI.
    Yoshida K; Kawashima H; Kannon T; Tajima A; Ohno N; Terada K; Takamatsu A; Adachi H; Ohno M; Miyati T; Ishikawa S; Ikeda H; Gabata T
    Magn Reson Imaging; 2022 Oct; 92():19-25. PubMed ID: 35636571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of machine learning-based multi-sequence MRI radiomics in diagnosing anterior cruciate ligament tears.
    Cheng Q; Lin H; Zhao J; Lu X; Wang Q
    J Orthop Surg Res; 2024 Jan; 19(1):99. PubMed ID: 38297322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer.
    Wu A; Luo L; Zeng Q; Wu C; Shu X; Huang P; Wang Z; Hu T; Feng Z; Tu Y; Zhu Y; Cao Y; Li Z
    Sci Rep; 2024 Jul; 14(1):16208. PubMed ID: 39003337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-Dimensional Machine Learning Radiomics for the Pretreatment Assessment of Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy in Dynamic Contrast-Enhanced MRI.
    Caballo M; Sanderink WBG; Han L; Gao Y; Athanasiou A; Mann RM
    J Magn Reson Imaging; 2023 Jan; 57(1):97-110. PubMed ID: 35633290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging.
    Granata V; Fusco R; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Izzo F; Normanno N; Petrillo A
    Radiol Med; 2024 Mar; 129(3):420-428. PubMed ID: 38308061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: a retrospective study.
    Azeroual S; Ben-Bouazza FE; Naqi A; Sebihi R
    J Egypt Natl Canc Inst; 2024 Jun; 36(1):20. PubMed ID: 38853190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics Based on Dynamic Contrast-Enhanced MRI to Early Predict Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Therapy.
    Zeng Q; Ke M; Zhong L; Zhou Y; Zhu X; He C; Liu L
    Acad Radiol; 2023 Aug; 30(8):1638-1647. PubMed ID: 36564256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.