These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39026540)

  • 21. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma.
    Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J
    BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning.
    Peng J; Wang W; Jin H; Qin X; Hou J; Yang Z; Shu Z
    BMC Cancer; 2023 Apr; 23(1):365. PubMed ID: 37085830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers.
    Li J; Li X; Ma J; Wang F; Cui S; Ye Z
    Eur Radiol; 2023 Jul; 33(7):5193-5204. PubMed ID: 36515713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer.
    Nemeth A; Chaudet P; Leporq B; Heudel PE; Barabas F; Tredan O; Treilleux I; Coulon A; Pilleul F; Beuf O
    MAGMA; 2021 Dec; 34(6):833-844. PubMed ID: 34255206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CT-based quantification of intratumoral heterogeneity for predicting pathologic complete response to neoadjuvant immunochemotherapy in non-small cell lung cancer.
    Ye G; Wu G; Zhang C; Wang M; Liu H; Song E; Zhuang Y; Li K; Qi Y; Liao Y
    Front Immunol; 2024; 15():1414954. PubMed ID: 38933281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance evaluation of ML models for preoperative prediction of HER2-low BC based on CE-CBBCT radiomic features: A prospective study.
    Chen X; Li M; Liang X; Su D
    Medicine (Baltimore); 2024 Jun; 103(24):e38513. PubMed ID: 38875420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer.
    Bitencourt AGV; Gibbs P; Rossi Saccarelli C; Daimiel I; Lo Gullo R; Fox MJ; Thakur S; Pinker K; Morris EA; Morrow M; Jochelson MS
    EBioMedicine; 2020 Nov; 61():103042. PubMed ID: 33039708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of breast cancer and axillary positive-node response to neoadjuvant chemotherapy based on multi-parametric magnetic resonance imaging radiomics models.
    Lin Y; Wang J; Li M; Zhou C; Hu Y; Wang M; Zhang X
    Breast; 2024 Aug; 76():103737. PubMed ID: 38696854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study.
    Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A
    Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer.
    Shayesteh S; Nazari M; Salahshour A; Sandoughdaran S; Hajianfar G; Khateri M; Yaghobi Joybari A; Jozian F; Fatehi Feyzabad SH; Arabi H; Shiri I; Zaidi H
    Med Phys; 2021 Jul; 48(7):3691-3701. PubMed ID: 33894058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study.
    Chen W; Lin G; Chen Y; Cheng F; Li X; Ding J; Zhong Y; Kong C; Chen M; Xia S; Lu C; Ji J
    BMC Cancer; 2024 Apr; 24(1):418. PubMed ID: 38580939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MRI-based radiomics analysis for differentiating phyllodes tumors of the breast from fibroadenomas.
    Tsuchiya M; Masui T; Terauchi K; Yamada T; Katyayama M; Ichikawa S; Noda Y; Goshima S
    Eur Radiol; 2022 Jun; 32(6):4090-4100. PubMed ID: 35044510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Noninvasive Tool Based on Magnetic Resonance Imaging Radiomics for the Preoperative Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer.
    Li C; Lu N; He Z; Tan Y; Liu Y; Chen Y; Wu Z; Liu J; Ren W; Mao L; Yu Y; Xie C; Yao H
    Ann Surg Oncol; 2022 Nov; 29(12):7685-7693. PubMed ID: 35773561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endorectal ultrasound radiomics in locally advanced rectal cancer patients: despeckling and radiotherapy response prediction using machine learning.
    Abbaspour S; Abdollahi H; Arabalibeik H; Barahman M; Arefpour AM; Fadavi P; Ay M; Mahdavi SR
    Abdom Radiol (NY); 2022 Nov; 47(11):3645-3659. PubMed ID: 35951085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI.
    Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C
    Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of recurrence of ischemic stroke within 1 year of discharge based on machine learning MRI radiomics.
    Liu J; Wu Y; Jia W; Han M; Chen Y; Li J; Wu B; Yin S; Zhang X; Chen J; Yu P; Luo H; Tu J; Zhou F; Cheng X; Yi Y
    Front Neurosci; 2023; 17():1110579. PubMed ID: 37214402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cystic renal mass screening: machine-learning-based radiomics on unenhanced computed tomography.
    Huang L; Ye Y; Chen J; Feng W; Peng S; Du X; Li X; Song Z; Liu T
    Diagn Interv Radiol; 2024 Jul; 30(4):236-247. PubMed ID: 38164893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine Learning-Based Breast Tumor Ultrasound Radiomics for Pre-operative Prediction of Axillary Sentinel Lymph Node Metastasis Burden in Early-Stage Invasive Breast Cancer.
    Yao J; Zhou W; Xu S; Jia X; Zhou J; Chen X; Zhan W
    Ultrasound Med Biol; 2024 Feb; 50(2):229-236. PubMed ID: 37951821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study.
    Wang X; Hua H; Han J; Zhong X; Liu J; Chen J
    Clin Breast Cancer; 2023 Aug; 23(6):e331-e344. PubMed ID: 37321954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer.
    Zeng Q; Xiong F; Liu L; Zhong L; Cai F; Zeng X
    Acad Radiol; 2023 Sep; 30 Suppl 2():S38-S49. PubMed ID: 37169624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.