These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39027357)

  • 1. Reproductive biology of Hawaiian lava crickets.
    Thadi A; Heinen-Kay J; Rotenberry JT; Zuk M
    Curr Res Insect Sci; 2024; 5():100074. PubMed ID: 39027357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Islands Within Islands: Bacterial Phylogenetic Structure and Consortia in Hawaiian Lava Caves and Fumaroles.
    Prescott RD; Zamkovaya T; Donachie SP; Northup DE; Medley JJ; Monsalve N; Saw JH; Decho AW; Chain PSG; Boston PJ
    Front Microbiol; 2022; 13():934708. PubMed ID: 35935195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing hypotheses of adaptive variation in cricket ovipositor lengths.
    Bradford MJ; Guerette PA; Roff DA
    Oecologia; 1993 Mar; 93(2):263-267. PubMed ID: 28313616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terminal investment in the gustatory appeal of nuptial food gifts in crickets.
    Duffield KR; Hunt J; Rapkin J; Sadd BM; Sakaluk SK
    J Evol Biol; 2015 Oct; 28(10):1872-81. PubMed ID: 26201649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sexual signal loss: The link between behaviour and rapid evolutionary dynamics in a field cricket.
    Zuk M; Bailey NW; Gray B; Rotenberry JT
    J Anim Ecol; 2018 May; 87(3):623-633. PubMed ID: 29417997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First record of cricket genus Caconemobius (Grylloidea: Nemobiinae) from China with description of a new species.
    Ma L; Zhang T; Qi T
    Zootaxa; 2015 Jan; 3914(5):585-90. PubMed ID: 25661965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Male dominance determines female egg laying rate in crickets.
    Bretman A; Rodríguez-Muñoz R; Tregenza T
    Biol Lett; 2006 Sep; 2(3):409-11. PubMed ID: 17148416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is diversification in male reproductive traits driven by evolutionary trade-offs between weapons and nuptial gifts?
    Liu X; Hayashi F; Lavine LC; Yang D
    Proc Biol Sci; 2015 May; 282(1807):20150247. PubMed ID: 25925103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The coadaptation of female morphology and offspring size: a comparative analysis in crickets.
    Carrière Y; Masaki S; Roff DA
    Oecologia; 1997 Apr; 110(2):197-204. PubMed ID: 28307425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method of comparing mating success and survival reveals similar sexual and viability selection for mobility traits in female tree crickets.
    Ercit K; Gwynne DT
    J Evol Biol; 2016 Jun; 29(6):1189-200. PubMed ID: 26991146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SEQUENTIAL RADIATIONS AND PATTERNS OF SPECIATION IN THE HAWAIIAN CRICKET GENUS LAUPALA INFERRED FROM DNA SEQUENCES.
    Shaw KL
    Evolution; 1996 Feb; 50(1):237-255. PubMed ID: 28568854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential allocation in a gift-giving spider: males adjust their reproductive investment in response to female condition.
    Solano-Brenes D; Costa-Schmidt LE; Albo MJ; Machado G
    BMC Ecol Evol; 2021 Jul; 21(1):140. PubMed ID: 34238218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonin- and two putative serotonin receptors-like immunohistochemical reactivities in the ground crickets Dianemobius nigrofasciatus and Allonemobius allardi.
    Shao QM; Fouda MM; Takeda M
    J Insect Physiol; 2010 Nov; 56(11):1576-86. PubMed ID: 20685356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct and indirect effects of sexual signal loss on female reproduction in the Pacific field cricket (Teleogryllus oceanicus).
    Heinen-Kay JL; Strub DB; Balenger SL; Zuk M
    J Evol Biol; 2019 Dec; 32(12):1382-1390. PubMed ID: 31495021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of diet quality and wing morph on male and female reproductive investment in a nuptial feeding ground cricket.
    Hall MD; Bussière LF; Brooks R
    PLoS One; 2008; 3(10):e3437. PubMed ID: 18927614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary ecology of aeolian and subterranean habitats in Hawaii.
    Howarth FG
    Trends Ecol Evol; 1987 Jul; 2(7):220-3. PubMed ID: 21227855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of offspring size and number: a test of the Smith-Fretwell model in three species of crickets.
    Carrière Y; Roff DA
    Oecologia; 1995 Jun; 102(3):389-396. PubMed ID: 28306850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causes and consequences of variation in development time in a field cricket.
    Gershman SN; Miller OG; Hamilton IM
    J Evol Biol; 2022 Feb; 35(2):299-310. PubMed ID: 34882888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid evolution of cuticular hydrocarbons in a species radiation of acoustically diverse Hawaiian crickets (Gryllidae: trigonidiinae: Laupala).
    Mullen SP; Mendelson TC; Schal C; Shaw KL
    Evolution; 2007 Jan; 61(1):223-31. PubMed ID: 17300441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simulated heat wave-but not herbicide exposure-alters resource investment strategy in an insect.
    Stahlschmidt ZR; Choi J; Choy B; Perez PL; Whitlock J
    J Therm Biol; 2023 Aug; 116():103670. PubMed ID: 37536102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.