These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 39027605)
1. Ethylene glycol is metabolized to ethanol and acetate and induces expression of bacterial microcompartments in Dank A; Liu Y; Wen X; Lin F; Wiersma A; Boeren S; Smid EJ; Notebaart RA; Abee T Heliyon; 2024 Jul; 10(13):e33444. PubMed ID: 39027605 [TBL] [Abstract][Full Text] [Related]
2. Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization of Dank A; Zeng Z; Boeren S; Notebaart RA; Smid EJ; Abee T Front Microbiol; 2021; 12():679827. PubMed ID: 34054787 [TBL] [Abstract][Full Text] [Related]
3. Anaerobic Growth of Zeng Z; Li S; Boeren S; Smid EJ; Notebaart RA; Abee T mSphere; 2021 Aug; 6(4):e0043421. PubMed ID: 34287006 [TBL] [Abstract][Full Text] [Related]
4. Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization Stimulates Anaerobic Growth of Zeng Z; Smid EJ; Boeren S; Notebaart RA; Abee T Front Microbiol; 2019; 10():2660. PubMed ID: 31803170 [TBL] [Abstract][Full Text] [Related]
5. Exploring Bacterial Microcompartments in the Acetogenic Bacterium Chowdhury NP; Alberti L; Linder M; Müller V Front Microbiol; 2020; 11():593467. PubMed ID: 33178174 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a Glycyl Radical Enzyme Bacterial Microcompartment Pathway in Schindel HS; Karty JA; McKinlay JB; Bauer CE J Bacteriol; 2019 Mar; 201(5):. PubMed ID: 30510145 [TBL] [Abstract][Full Text] [Related]
7. Ethylene Glycol Metabolism in the Acetogen Acetobacterium woodii. Trifunović D; Schuchmann K; Müller V J Bacteriol; 2016 Jan; 198(7):1058-65. PubMed ID: 26787767 [TBL] [Abstract][Full Text] [Related]
8. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans. Petit E; LaTouf WG; Coppi MV; Warnick TA; Currie D; Romashko I; Deshpande S; Haas K; Alvelo-Maurosa JG; Wardman C; Schnell DJ; Leschine SB; Blanchard JL PLoS One; 2013; 8(1):e54337. PubMed ID: 23382892 [TBL] [Abstract][Full Text] [Related]
9. Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif. Jakobson CM; Kim EY; Slininger MF; Chien A; Tullman-Ercek D J Biol Chem; 2015 Oct; 290(40):24519-33. PubMed ID: 26283792 [TBL] [Abstract][Full Text] [Related]
10. Impact of vitamin B Zeng Z; Wijnands LM; Boeren S; Smid EJ; Notebaart RA; Abee T Int J Food Microbiol; 2024 Jan; 410():110486. PubMed ID: 37992553 [TBL] [Abstract][Full Text] [Related]
11. Engineering transcriptional regulation to control Pdu microcompartment formation. Kim EY; Jakobson CM; Tullman-Ercek D PLoS One; 2014; 9(11):e113814. PubMed ID: 25427074 [TBL] [Abstract][Full Text] [Related]
12. Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes. Zeng Z; Boeren S; Bhandula V; Light SH; Smid EJ; Notebaart RA; Abee T mSystems; 2021 Apr; 6(2):. PubMed ID: 33850044 [TBL] [Abstract][Full Text] [Related]
13. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. Bobik TA; Havemann GD; Busch RJ; Williams DS; Aldrich HC J Bacteriol; 1999 Oct; 181(19):5967-75. PubMed ID: 10498708 [TBL] [Abstract][Full Text] [Related]
15. A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. Bobik TA; Ailion M; Roth JR J Bacteriol; 1992 Apr; 174(7):2253-66. PubMed ID: 1312999 [TBL] [Abstract][Full Text] [Related]
16. In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments. Sturms R; Streauslin NA; Cheng S; Bobik TA J Bacteriol; 2015 Jul; 197(14):2412-21. PubMed ID: 25962913 [TBL] [Abstract][Full Text] [Related]
17. l-Rhamnose Metabolism in Clostridium beijerinckii Strain DSM 6423. Diallo M; Simons AD; van der Wal H; Collas F; Houweling-Tan B; Kengen SWM; López-Contreras AM Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578270 [TBL] [Abstract][Full Text] [Related]
18. Propionibacterium freudenreichii thrives in microaerobic conditions by complete oxidation of lactate to CO Dank A; van Mastrigt O; Boeren S; Lillevang SK; Abee T; Smid EJ Environ Microbiol; 2021 Jun; 23(6):3116-3129. PubMed ID: 33955639 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for xylose fermentation. Wei P; Lin M; Wang Z; Fu H; Yang H; Jiang W; Yang ST Bioresour Technol; 2016 Nov; 219():91-97. PubMed ID: 27479799 [TBL] [Abstract][Full Text] [Related]
20. Improving the drying of Propionibacterium freudenreichii starter cultures. Jeantet R; Jan G Appl Microbiol Biotechnol; 2021 May; 105(9):3485-3494. PubMed ID: 33885925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]