These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 3902790)

  • 21. Vanadate-resistant mutants of Candida albicans show alterations in phosphate uptake.
    Mahanty SK; Khaware R; Ansari S; Gupta P; Prasad R
    FEMS Microbiol Lett; 1991 Nov; 68(2):163-6. PubMed ID: 1778439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa.
    Baysse C; De Vos D; Naudet Y; Vandermonde A; Ochsner U; Meyer JM; Budzikiewicz H; Schäfer M; Fuchs R; Cornelis P
    Microbiology (Reading); 2000 Oct; 146 ( Pt 10)():2425-2434. PubMed ID: 11021919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of vanadate on intracellular reduction equivalents in mouse liver and the fate of vanadium in plasma, erythrocytes and liver.
    Bruech M; Quintanilla ME; Legrum W; Koch J; Netter KJ; Fuhrmann GF
    Toxicology; 1984 Jun; 31(3-4):283-95. PubMed ID: 6564811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasma membrane-stimulated vanadate-dependent NADH oxidation is not the primary mediator of vanadate toxicity in Saccharomyces cerevisiae.
    Minasi LA; Chang A; Willsky GR
    J Biol Chem; 1990 Sep; 265(25):14907-10. PubMed ID: 2144280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of mutations that overcome the toxic effect of glucose on phosphoglucose isomerase less strains of Saccharomyces cerevisiae.
    Gamo FJ; Portillo F; Gancedo C
    FEMS Microbiol Lett; 1993 Feb; 106(3):233-7. PubMed ID: 8454188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutational analysis of the MAL1 locus of Saccharomyces: identification and functional characterization of three genes.
    Cohen JD; Goldenthal MJ; Buchferer B; Marmur J
    Mol Gen Genet; 1984; 196(2):208-16. PubMed ID: 6387396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Significance of NADH-vanadate-oxidoreductase of cardiac and erythrocyte cell membranes.
    Erdmann E; Werdan K; Krawietz W; Lebuhn M; Christl S
    Basic Res Cardiol; 1980; 75(3):460-5. PubMed ID: 6255934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants.
    Kadowaki T; Chen S; Hitomi M; Jacobs E; Kumagai C; Liang S; Schneiter R; Singleton D; Wisniewska J; Tartakoff AM
    J Cell Biol; 1994 Aug; 126(3):649-59. PubMed ID: 8045930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH.
    Keller RJ; Coulombe RA; Sharma RP; Grover TA; Piette LH
    Free Radic Biol Med; 1989; 6(1):15-22. PubMed ID: 2536340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Saccharomyces cerevisiae LEP1/SAC3 gene is associated with leucine transport.
    Stella CA; Korch C; Ramos EH; Bauer A; Kölling R; Mattoon JR
    Mol Gen Genet; 1999 Sep; 262(2):332-41. PubMed ID: 10517330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and genetic study of triethyltin-resistant mutants of Saccharomyces cerevisiae.
    Dupont CH; Rigoulet M; Aigle M; Guérin B
    Curr Genet; 1990 Jun; 17(6):465-72. PubMed ID: 2202522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superoxide-independent reduction of vanadate by rat liver microsomes/NAD(P)H: vanadate reductase activity.
    Shi X; Dalal NS
    Arch Biochem Biophys; 1992 May; 295(1):70-5. PubMed ID: 1315507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vanadyl (IV) and vanadate (V) binding to selected endogenous phosphate, carboxyl, and amino ligands; calculations of cellular vanadium species distribution.
    Nechay BR; Nanninga LB; Nechay PS
    Arch Biochem Biophys; 1986 Nov; 251(1):128-38. PubMed ID: 3789729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of Vanadate by ascorbic acid and noradrenaline in synaptosomes.
    Adám-Vizi V; Váradi G; Simon P
    J Neurochem; 1981 May; 36(5):1616-20. PubMed ID: 6264031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic and biochemical characterization of Saccharomyces cerevisiae mutants resistant to trifluoroleucine.
    Casalone E; Fia G; Barberio C; Cavalieri D; Turbanti L; Polsinelli M
    Res Microbiol; 1997; 148(7):613-23. PubMed ID: 9765846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and analysis of ketoconazole resistant mutants of Saccharomyces cerevisiae.
    Watson PF; Rose ME; Kelly SL
    J Med Vet Mycol; 1988 Jun; 26(3):153-62. PubMed ID: 3050008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diphtheria toxin-resistant mutants of Saccharomyces cerevisiae.
    Chen JY; Bodley JW; Livingston DM
    Mol Cell Biol; 1985 Dec; 5(12):3357-60. PubMed ID: 3915773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline.
    Ramos C; Calderon IL
    Appl Environ Microbiol; 1992 May; 58(5):1677-82. PubMed ID: 1622238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vanadyl and vanadate inhibit Ca2+ transport systems of the adipocyte plasma membrane and endoplasmic reticulum.
    Delfert DM; McDonald JM
    Arch Biochem Biophys; 1985 Sep; 241(2):665-72. PubMed ID: 2931050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae.
    Vijayraghavan U; Company M; Abelson J
    Genes Dev; 1989 Aug; 3(8):1206-16. PubMed ID: 2676722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.