These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 39028191)
1. Phenazine-1 carboxylic acid of Truong-Bolduc QC; Wang Y; Lawton BG; Brown Harding H; Yonker LM; Vyas JM; Hooper DC Antimicrob Agents Chemother; 2024 Aug; 68(8):e0063624. PubMed ID: 39028191 [TBL] [Abstract][Full Text] [Related]
2. Role of the Tet38 Efflux Pump in Staphylococcus aureus Internalization and Survival in Epithelial Cells. Truong-Bolduc QC; Bolduc GR; Medeiros H; Vyas JM; Wang Y; Hooper DC Infect Immun; 2015 Nov; 83(11):4362-72. PubMed ID: 26324534 [TBL] [Abstract][Full Text] [Related]
4. Role of Truong-Bolduc QC; Wang Y; Hooper DC J Bacteriol; 2022 Jul; 204(7):e0014222. PubMed ID: 35699453 [TBL] [Abstract][Full Text] [Related]
5. Native efflux pumps contribute resistance to antimicrobials of skin and the ability of Staphylococcus aureus to colonize skin. Truong-Bolduc QC; Villet RA; Estabrooks ZA; Hooper DC J Infect Dis; 2014 May; 209(9):1485-93. PubMed ID: 24280365 [TBL] [Abstract][Full Text] [Related]
6. Effect of Staphylococcus aureus Tet38 native efflux pump on in vivo response to tetracycline in a murine subcutaneous abscess model. Chen C; Hooper DC J Antimicrob Chemother; 2018 Mar; 73(3):720-723. PubMed ID: 29216347 [TBL] [Abstract][Full Text] [Related]
7. Evolution of Resistance to Phenazine Antibiotics in Fu T; Cai Z; Yue Z; Yang H; Fang B; Zhang X; Fan Z; Pan X; Yang F; Jin Y; Cheng Z; Wu W; Sun B; Huigens RW; Yang L; Bai F ACS Infect Dis; 2021 Mar; 7(3):636-649. PubMed ID: 33650853 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional Regulator TetR21 Controls the Expression of the Staphylococcus aureus LmrS Efflux Pump. Truong-Bolduc QC; Wang Y; Chen C; Hooper DC Antimicrob Agents Chemother; 2017 Aug; 61(8):. PubMed ID: 28584148 [TBL] [Abstract][Full Text] [Related]
9. Tet38 of Staphylococcus aureus Binds to Host Cell Receptor Complex CD36-Toll-Like Receptor 2 and Protects from Teichoic Acid Synthesis Inhibitors Tunicamycin and Congo Red. Truong-Bolduc QC; Wang Y; Hooper DC Infect Immun; 2019 Jul; 87(7):. PubMed ID: 31010815 [TBL] [Abstract][Full Text] [Related]
10. Staphylococcus aureus Tet38 Efflux Pump Structural Modeling and Roles of Essential Residues in Drug Efflux and Host Cell Internalization. Truong-Bolduc QC; Wang Y; Hooper DC Infect Immun; 2021 Apr; 89(5):. PubMed ID: 33619028 [TBL] [Abstract][Full Text] [Related]
11. A novel member of drug/metabolite transporter (DMT) family efflux pump, SA00565, contributes to tetracycline antibiotics resistance in Li D; Ge Y; Wang N; Shi Y; Guo G; Zhang J; Zou Q; Liu Q Microbiol Spectr; 2024 Jun; 12(6):e0011124. PubMed ID: 38651886 [TBL] [Abstract][Full Text] [Related]
12. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance. Sporer AJ; Beierschmitt C; Bendebury A; Zink KE; Price-Whelan A; Buzzeo MC; Sanchez LM; Dietrich LEP Microbiology (Reading); 2018 May; 164(5):790-800. PubMed ID: 29629858 [TBL] [Abstract][Full Text] [Related]
13. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. Truong-Bolduc QC; Dunman PM; Strahilevitz J; Projan SJ; Hooper DC J Bacteriol; 2005 Apr; 187(7):2395-405. PubMed ID: 15774883 [TBL] [Abstract][Full Text] [Related]
14. Tet38 Efflux Pump Affects Staphylococcus aureus Internalization by Epithelial Cells through Interaction with CD36 and Contributes to Bacterial Escape from Acidic and Nonacidic Phagolysosomes. Truong-Bolduc QC; Khan NS; Vyas JM; Hooper DC Infect Immun; 2017 Feb; 85(2):. PubMed ID: 27956597 [TBL] [Abstract][Full Text] [Related]
15. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Sakhtah H; Koyama L; Zhang Y; Morales DK; Fields BL; Price-Whelan A; Hogan DA; Shepard K; Dietrich LE Proc Natl Acad Sci U S A; 2016 Jun; 113(25):E3538-47. PubMed ID: 27274079 [TBL] [Abstract][Full Text] [Related]
16. Tet38 Efflux Pump Contributes to Fosfomycin Resistance in Staphylococcus aureus. Truong-Bolduc QC; Wang Y; Hooper DC Antimicrob Agents Chemother; 2018 Aug; 62(8):. PubMed ID: 29891612 [TBL] [Abstract][Full Text] [Related]
17. Identification of a Staphylococcus aureus Efflux Pump Regulator Using a DNA-Protein Affinity Technique. Truong-Bolduc QC; Hooper DC Methods Mol Biol; 2018; 1700():269-291. PubMed ID: 29177836 [TBL] [Abstract][Full Text] [Related]
18. High-level pacidamycin resistance in Pseudomonas aeruginosa is mediated by an opp oligopeptide permease encoded by the opp-fabI operon. Mistry A; Warren MS; Cusick JK; Karkhoff-Schweizer RR; Lomovskaya O; Schweizer HP Antimicrob Agents Chemother; 2013 Nov; 57(11):5565-71. PubMed ID: 23979749 [TBL] [Abstract][Full Text] [Related]
19. Resistance against antimicrobial peptides is independent of Escherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA efflux pumps. Rieg S; Huth A; Kalbacher H; Kern WV Int J Antimicrob Agents; 2009 Feb; 33(2):174-6. PubMed ID: 18945595 [TBL] [Abstract][Full Text] [Related]
20. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Dean CR; Visalli MA; Projan SJ; Sum PE; Bradford PA Antimicrob Agents Chemother; 2003 Mar; 47(3):972-8. PubMed ID: 12604529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]