These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39028501)

  • 1. GeF-seq: A Simple Procedure for Base-Pair Resolution ChIP-seq.
    Chumsakul O; Nakamura K; Fukamachi K; Ishikawa S; Oshima T
    Methods Mol Biol; 2024; 2819():39-53. PubMed ID: 39028501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GeF-seq: A Simple Procedure for Base Pair Resolution ChIP-seq.
    Chumsakul O; Nakamura K; Ishikawa S; Oshima T
    Methods Mol Biol; 2018; 1837():33-47. PubMed ID: 30109604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq.
    Chumsakul O; Nakamura K; Kurata T; Sakamoto T; Hobman JL; Ogasawara N; Oshima T; Ishikawa S
    DNA Res; 2013 Aug; 20(4):325-38. PubMed ID: 23580539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS; Ha J; Baek S; Sung MH
    Epigenetics Chromatin; 2019 Jun; 12(1):30. PubMed ID: 31164146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Resolution Mapping of Protein-DNA Interactions in Mouse Stem Cell-Derived Neurons using Chromatin Immunoprecipitation-Exonuclease (ChIP-Exo).
    Montanera KN; Rhee HS
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32865524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The native cistrome and sequence motif families of the maize ear.
    Savadel SD; Hartwig T; Turpin ZM; Vera DL; Lung PY; Sui X; Blank M; Frommer WB; Dennis JH; Zhang J; Bass HW
    PLoS Genet; 2021 Aug; 17(8):e1009689. PubMed ID: 34383745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explicit DNase sequence bias modeling enables high-resolution transcription factor footprint detection.
    Yardımcı GG; Frank CL; Crawford GE; Ohler U
    Nucleic Acids Res; 2014 Oct; 42(19):11865-78. PubMed ID: 25294828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic Footprinting Analyses from DNase-seq Data to Construct Gene Regulatory Networks.
    Moyano TC; Gutiérrez RA; Alvarez JM
    Methods Mol Biol; 2021; 2328():25-46. PubMed ID: 34251618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by
    Chumsakul O; Anantsri DP; Quirke T; Oshima T; Nakamura K; Ishikawa S; Nakano MM
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28439033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide footprinting: ready for prime time?
    Sung MH; Baek S; Hager GL
    Nat Methods; 2016 Mar; 13(3):222-228. PubMed ID: 26914206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Summary of ChIP-Seq Methods and Description of an Optimized ChIP-Seq Protocol.
    Fadri MTM; Lee JB; Keung AJ
    Methods Mol Biol; 2024; 2842():419-447. PubMed ID: 39012609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of computational footprinting methods for DNase sequencing experiments.
    Gusmao EG; Allhoff M; Zenke M; Costa IG
    Nat Methods; 2016 Apr; 13(4):303-9. PubMed ID: 26901649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DMS-Seq for In Vivo Genome-wide Mapping of Protein-DNA Interactions and Nucleosome Centers.
    Umeyama T; Ito T
    Cell Rep; 2017 Oct; 21(1):289-300. PubMed ID: 28978481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain.
    Handel AE; Gallone G; Zameel Cader M; Ponting CP
    Hum Mol Genet; 2017 Jan; 26(1):79-89. PubMed ID: 27798116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-type specificity of ChIP-predicted transcription factor binding sites.
    Håndstad T; Rye M; Močnik R; Drabløs F; Sætrom P
    BMC Genomics; 2012 Aug; 13():372. PubMed ID: 22863112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ChIP-Exo Method to Identify Genomic Locations of DNA-Binding Proteins at Near Single Base-Pair Resolution.
    Yeh SY; Rhee HS
    Methods Mol Biol; 2023; 2599():33-48. PubMed ID: 36427141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data.
    Piper J; Elze MC; Cauchy P; Cockerill PN; Bonifer C; Ott S
    Nucleic Acids Res; 2013 Nov; 41(21):e201. PubMed ID: 24071585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChIP-seq Analysis of Condensin Complex in Cultured Mammalian Cells.
    Sakata T; Shirahige K; Sutani T
    Methods Mol Biol; 2017; 1515():257-271. PubMed ID: 27797085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.