These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39028506)

  • 21. Preparation and Analysis of GLOE-Seq Libraries for Genome-Wide Mapping of DNA Replication Patterns, Single-Strand Breaks, and Lesions.
    Petrosino G; Zilio N; Sriramachandran AM; Ulrich HD
    STAR Protoc; 2020 Sep; 1(2):100076. PubMed ID: 33111111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [DNA supercoiling and topoisomerases in Escherichia coli].
    Gómez-Eichelmann MC; Camacho-Carranza R
    Rev Latinoam Microbiol; 1995; 37(3):291-304. PubMed ID: 8850348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).
    Langley AR; Gräf S; Smith JC; Krude T
    Nucleic Acids Res; 2016 Dec; 44(21):10230-10247. PubMed ID: 27587586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intercalation-Based Single-Molecule Fluorescence Assay To Study DNA Supercoil Dynamics.
    Ganji M; Kim SH; van der Torre J; Abbondanzieri E; Dekker C
    Nano Lett; 2016 Jul; 16(7):4699-707. PubMed ID: 27356180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and dynamic basis of a supercoiling-responsive DNA element.
    Bae SH; Yun SH; Sun D; Lim HM; Choi BS
    Nucleic Acids Res; 2006; 34(1):254-61. PubMed ID: 16414956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-molecule DNA-mapping and whole-genome sequencing of individual cells.
    Marie R; Pedersen JN; Bærlocher L; Koprowska K; Pødenphant M; Sabatel C; Zalkovskij M; Mironov A; Bilenberg B; Ashley N; Flyvbjerg H; Bodmer WF; Kristensen A; Mir KU
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11192-11197. PubMed ID: 30322920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.
    Usongo V; Martel M; Balleydier A; Drolet M
    DNA Repair (Amst); 2016 Apr; 40():1-17. PubMed ID: 26947024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments.
    Juric I; Yu M; Abnousi A; Raviram R; Fang R; Zhao Y; Zhang Y; Qiu Y; Yang Y; Li Y; Ren B; Hu M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006982. PubMed ID: 30986246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specialized chromatin structure domain boundary elements flanking a Drosophila heat shock gene locus are under torsional strain in vivo.
    Jupe ER; Sinden RR; Cartwright IL
    Biochemistry; 1995 Feb; 34(8):2628-33. PubMed ID: 7873544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Varying levels of positive and negative supercoiling differently affect the efficiency with which topoisomerase II catenates and decatenates DNA.
    Roca J
    J Mol Biol; 2001 Jan; 305(3):441-50. PubMed ID: 11152602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method.
    Zhou ZX; Zhang MJ; Peng X; Takayama Y; Xu XY; Huang LZ; Du LL
    Genome Res; 2013 Apr; 23(4):705-15. PubMed ID: 23249883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of negative supercoiling in Hin-mediated site-specific recombination.
    Lim HM; Simon MI
    J Biol Chem; 1992 Jun; 267(16):11176-82. PubMed ID: 1597452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic feature extraction and comparison based on global alignment of ChIP-sequencing data.
    Tang B
    Bioengineered; 2017 May; 8(3):248-255. PubMed ID: 27690208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of DNA structure in vivo using psoralen photobinding: measurement of supercoiling, topological domains, and DNA-protein interactions.
    Sinden RR; Ussery DW
    Methods Enzymol; 1992; 212():319-35. PubMed ID: 1518453
    [No Abstract]   [Full Text] [Related]  

  • 36. Modulation of psoralen DNA crosslinking kinetics associated with a triplex-forming oligonucleotide.
    Oh DH; Suzara V; Krishnan R
    Photochem Photobiol; 2008; 84(3):727-33. PubMed ID: 18435621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential roles of positive and negative supercoiling in organizing the E. coli genome.
    Fu Z; Guo MS; Zhou W; Xiao J
    Nucleic Acids Res; 2024 Jan; 52(2):724-737. PubMed ID: 38050973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective.
    Koster DA; Crut A; Shuman S; Bjornsti MA; Dekker NH
    Cell; 2010 Aug; 142(4):519-30. PubMed ID: 20723754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking.
    Pfannschmidt C; Schaper A; Heim G; Jovin TM; Langowski J
    Nucleic Acids Res; 1996 May; 24(9):1702-9. PubMed ID: 8649989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-Seq): Tips and Tricks Regarding the Laboratory Protocol and Initial Downstream Data Analysis.
    Patten DK; Corleone G; Magnani L
    Methods Mol Biol; 2018; 1767():271-288. PubMed ID: 29524141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.