These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 39028588)

  • 1. spatiAlign: an unsupervised contrastive learning model for data integration of spatially resolved transcriptomics.
    Zhang C; Liu L; Zhang Y; Li M; Fang S; Kang Q; Chen A; Xu X; Zhang Y; Li Y
    Gigascience; 2024 Jan; 13():. PubMed ID: 39028588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpaGIC: graph-informed clustering in spatial transcriptomics via self-supervised contrastive learning.
    Liu W; Wang B; Bai Y; Liang X; Xue L; Luo J
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39541189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DGSIST: Clustering spatial transcriptome data based on deep graph structure Infomax.
    Xiu YH; Sun SL; Zhou BW; Wan Y; Tang H; Long HX
    Methods; 2024 Nov; 231():226-236. PubMed ID: 39413889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurately deciphering spatial domains for spatially resolved transcriptomics with stCluster.
    Wang T; Shu H; Hu J; Wang Y; Chen J; Peng J; Shang X
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data.
    Zhang L; Liang S; Wan L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning.
    Zeng Y; Yin R; Luo M; Chen J; Pan Z; Lu Y; Yu W; Yang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36781228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLOBE: a contrastive learning-based framework for integrating single-cell transcriptome datasets.
    Yan X; Zheng R; Li M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST.
    Liu W; Liao X; Luo Z; Yang Y; Lau MC; Jiao Y; Shi X; Zhai W; Ji H; Yeong J; Liu J
    Nat Commun; 2023 Jan; 14(1):296. PubMed ID: 36653349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A graph self-supervised residual learning framework for domain identification and data integration of spatial transcriptomics.
    Huang J; Fu X; Zhang Z; Xie Y; Liu S; Wang Y; Zhao Z; Peng Y
    Commun Biol; 2024 Sep; 7(1):1123. PubMed ID: 39266614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data.
    Guo Y; Zhu B; Tang C; Rong R; Ma Y; Xiao G; Xu L; Li Q
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39470304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BFAST: joint dimension reduction and spatial clustering with Bayesian factor analysis for zero-inflated spatial transcriptomics data.
    Xu Y; Lv D; Zou X; Wu L; Xu X; Zhao X
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39552067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-modal contrastive learning of subcellular organization using DICE.
    Nasser R; Schaffer LV; Ideker T; Sharan R
    Bioinformatics; 2024 Sep; 40(Suppl 2):ii105-ii110. PubMed ID: 39230695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph attention automatic encoder based on contrastive learning for domain recognition of spatial transcriptomics.
    Wang T; Zhu H; Zhou Y; Ding W; Ding W; Han L; Zhang X
    Commun Biol; 2024 Oct; 7(1):1351. PubMed ID: 39424696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph contrastive learning as a versatile foundation for advanced scRNA-seq data analysis.
    Zhang Z; Liu Y; Xiao M; Wang K; Huang Y; Bian J; Yang R; Li F
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39487083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST.
    Long Y; Ang KS; Li M; Chong KLK; Sethi R; Zhong C; Xu H; Ong Z; Sachaphibulkij K; Chen A; Zeng L; Fu H; Wu M; Lim LHK; Liu L; Chen J
    Nat Commun; 2023 Mar; 14(1):1155. PubMed ID: 36859400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DEDUCE: Multi-head attention decoupled contrastive learning to discover cancer subtypes based on multi-omics data.
    Pan L; Wang X; Liang Q; Shang J; Liu W; Xu L; Peng S
    Comput Methods Programs Biomed; 2024 Dec; 257():108478. PubMed ID: 39504713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially contrastive variational autoencoder for deciphering tissue heterogeneity from spatially resolved transcriptomics.
    Hu Y; Xiao K; Yang H; Liu X; Zhang C; Shi Q
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38324623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.