These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39028591)

  • 1. CroMAM: A Cross-Magnification Attention Feature Fusion Model for Predicting Genetic Status and Survival of Gliomas using Histological Images.
    Guo J; Xu P; Wu Y; Tao Y; Han C; Lin J; Zhao K; Liu Z; Liu W; Lu C
    IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 39028591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MG-Trans: Multi-Scale Graph Transformer With Information Bottleneck for Whole Slide Image Classification.
    Shi J; Tang L; Gao Z; Li Y; Wang C; Gong T; Li C; Fu H
    IEEE Trans Med Imaging; 2023 Dec; 42(12):3871-3883. PubMed ID: 37682644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hagnifinder: Recovering magnification information of digital histological images using deep learning.
    Zhang H; Liu Z; Song M; Lu C
    J Pathol Inform; 2023; 14():100302. PubMed ID: 36923447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images.
    Li GY; Chen J; Jang SI; Gong K; Li Q
    Med Phys; 2024 Mar; 51(3):2096-2107. PubMed ID: 37776263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LumVertCancNet: A novel 3D lumbar vertebral body cancellous bone location and segmentation method based on hybrid Swin-transformer.
    Zhang Y; Shi Z; Wang H; Cui S; Zhang L; Liu J; Shan X; Liu Y; Fang L
    Comput Biol Med; 2024 Mar; 171():108237. PubMed ID: 38422966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation.
    Zhang W; Chen S; Ma Y; Liu Y; Cao X
    Comput Biol Med; 2024 Mar; 171():108005. PubMed ID: 38340437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BAF-Net: Bidirectional attention fusion network
    Fang J; Jiang H; Zhang S; Sun L; Hu X; Liu J; Gong M; Liu H; Fu Y
    Front Plant Sci; 2023; 14():1123410. PubMed ID: 37051074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MC-ViT: Multi-path cross-scale vision transformer for thymoma histopathology whole slide image typing.
    Zhang H; Chen H; Qin J; Wang B; Ma G; Wang P; Zhong D; Liu J
    Front Oncol; 2022; 12():925903. PubMed ID: 36387248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CVTrack: Combined Convolutional Neural Network and Vision Transformer Fusion Model for Visual Tracking.
    Wang J; Song Y; Song C; Tian H; Zhang S; Sun J
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFATransUnet: Channel-wise cross fusion attention and transformer for 2D medical image segmentation.
    Wang C; Wang L; Wang N; Wei X; Feng T; Wu M; Yao Q; Zhang R
    Comput Biol Med; 2024 Jan; 168():107803. PubMed ID: 38064854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Scale Efficient Graph-Transformer for Whole Slide Image Classification.
    Ding S; Li J; Wang J; Ying S; Shi J
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):5926-5936. PubMed ID: 37725722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LESS: Label-efficient multi-scale learning for cytological whole slide image screening.
    Zhao B; Deng W; Li ZHH; Zhou C; Gao Z; Wang G; Li X
    Med Image Anal; 2024 May; 94():103109. PubMed ID: 38387243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HST-MRF: Heterogeneous Swin Transformer With Multi-Receptive Field for Medical Image Segmentation.
    Huang X; Gong H; Zhang J
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4048-4061. PubMed ID: 38709610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformer guided self-adaptive network for multi-scale skin lesion image segmentation.
    Xin C; Liu Z; Ma Y; Wang D; Zhang J; Li L; Zhou Q; Xu S; Zhang Y
    Comput Biol Med; 2024 Feb; 169():107846. PubMed ID: 38184865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma.
    Sun X; Li W; Fu B; Peng Y; He J; Wang L; Yang T; Meng X; Li J; Wang J; Huang P; Wang R
    Comput Methods Programs Biomed; 2023 Dec; 242():107789. PubMed ID: 37722310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swin-Net: A Swin-Transformer-Based Network Combing with Multi-Scale Features for Segmentation of Breast Tumor Ultrasound Images.
    Zhu C; Chai X; Xiao Y; Liu X; Zhang R; Yang Z; Wang Z
    Diagnostics (Basel); 2024 Jan; 14(3):. PubMed ID: 38337784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computationally efficient adaptive decompression for whole slide image processing.
    Li Z; Li B; Eliceiri KW; Narayanan V
    Biomed Opt Express; 2023 Feb; 14(2):667-686. PubMed ID: 36874494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAE-TransRNet: An improved transformer-ConvNet architecture with masked autoencoder for cardiac MRI registration.
    Xiao X; Dong S; Yu Y; Li Y; Yang G; Qiu Z
    Front Med (Lausanne); 2023; 10():1114571. PubMed ID: 36968818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.
    Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B
    Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images.
    Li L; Liang Y; Shao M; Lu S; Liao S; Ouyang D
    Comput Biol Med; 2023 Feb; 153():106482. PubMed ID: 36586231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.