These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39028732)

  • 1. Feature extraction method of EEG based on wavelet packet reconstruction and deep learning model of VR motion sickness feature classification and prediction.
    Luo S; Ren P; Wu J; Wu X; Zhang X
    PLoS One; 2024; 19(7):e0305733. PubMed ID: 39028732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VR motion sickness recognition by using EEG rhythm energy ratio based on wavelet packet transform.
    Li X; Zhu C; Xu C; Zhu J; Li Y; Wu S
    Comput Methods Programs Biomed; 2020 May; 188():105266. PubMed ID: 31865095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG).
    Lim HK; Ji K; Woo YS; Han DU; Lee DH; Nam SG; Jang KM
    Neurosci Lett; 2021 Jan; 743():135589. PubMed ID: 33359731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of Visually Induced Motion Sickness Based on Phase-Locked Value Functional Connectivity Matrix and CNN-LSTM.
    Shen Z; Liu X; Li W; Li X; Wang Q
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Motion Sickness Predictor Induced by Visual Stimuli in Virtual Reality.
    Kim J; Oh H; Kim W; Choi S; Son W; Lee S
    IEEE Trans Neural Netw Learn Syst; 2022 Feb; 33(2):554-566. PubMed ID: 33079678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel neurodigital interface reduces motion sickness in virtual reality.
    Dopsaj M; Tan W; Perovic V; Stajic Z; Milosavljevic N; Paessler S; Makishima T
    Neurosci Lett; 2024 Mar; 825():137692. PubMed ID: 38382798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG classification model for virtual reality motion sickness based on multi-scale CNN feature correlation.
    Hua C; Tao J; Zhou Z; Chai L; Yan Y; Liu J; Fu R
    Comput Methods Programs Biomed; 2024 Jun; 251():108218. PubMed ID: 38728828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based stress detection for daily life use using single-channel EEG and GSR in a virtual reality interview paradigm.
    Kim HG; Song S; Cho BH; Jang DP
    PLoS One; 2024; 19(7):e0305864. PubMed ID: 38959272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VR.net: A Real-world Dataset for Virtual Reality Motion Sickness Research.
    Wen E; Gupta C; Sasikumar P; Billinghurst M; Wilmott J; Skow E; Dey A; Nanayakkara S
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2330-2336. PubMed ID: 38437109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating objective (EEG) and subjective (SSQ) cybersickness in people with susceptibility to motion sickness.
    Jang KM; Kwon M; Nam SG; Kim D; Lim HK
    Appl Ergon; 2022 Jul; 102():103731. PubMed ID: 35248910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sick Moves! Motion Parameters as Indicators of Simulator Sickness.
    Feigl T; Roth D; Gradl S; Wirth M; Latoschik ME; Eskofier BM; Philippsen M; Mutschler C
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3146-3157. PubMed ID: 31425036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion sickness and sense of presence in a virtual reality environment developed for manual wheelchair users, with three different approaches.
    Salimi Z; Ferguson-Pell MW
    PLoS One; 2021; 16(8):e0255898. PubMed ID: 34411151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential factors contributing to observed sex differences in virtual-reality-induced sickness.
    Bannigan GM; de Sousa AA; Scheller M; Finnegan DJ; Proulx MJ
    Exp Brain Res; 2024 Feb; 242(2):463-475. PubMed ID: 38170233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG effects of motion sickness induced in a dynamic virtual reality environment.
    Lin CT; Chuang SW; Chen YC; Ko LW; Liang SF; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3872-5. PubMed ID: 18002844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of using virtual reality in geriatric psychiatry.
    Just SA; Lütt A; Siegle P; Döring-Brandl EJ
    Int J Geriatr Psychiatry; 2024 Jan; 39(1):e6060. PubMed ID: 38241061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of three-dimensional motion sickness using a virtual reality simulator for robot-assisted surgery in undergraduate medical students: A prospective observational study.
    Takata R; Kanehira M; Kato Y; Matsuura T; Kato R; Maekawa S; Obara W
    BMC Med Educ; 2021 Sep; 21(1):498. PubMed ID: 34548032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality.
    Yeo SS; Kwon JW; Park SY
    Sci Rep; 2022 Oct; 12(1):18043. PubMed ID: 36302810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.