These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 39028956)
1. Learning Fixed Points of Recurrent Neural Networks by Reparameterizing the Network Model. Zhu V; Rosenbaum R Neural Comput; 2024 Jul; 36(8):1568-1600. PubMed ID: 39028956 [TBL] [Abstract][Full Text] [Related]
2. Neural learning rules for generating flexible predictions and computing the successor representation. Fang C; Aronov D; Abbott LF; Mackevicius EL Elife; 2023 Mar; 12():. PubMed ID: 36928104 [TBL] [Abstract][Full Text] [Related]
3. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
4. Learning activation rules rather than connection weights. Grundstrom EL; Reggia JA Int J Neural Syst; 1996 May; 7(2):129-47. PubMed ID: 8823624 [TBL] [Abstract][Full Text] [Related]
5. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Auer P; Burgsteiner H; Maass W Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524 [TBL] [Abstract][Full Text] [Related]
6. Heterogeneity in Neuronal Dynamics Is Learned by Gradient Descent for Temporal Processing Tasks. Winston CN; Mastrovito D; Shea-Brown E; Mihalas S Neural Comput; 2023 Mar; 35(4):555-592. PubMed ID: 36827598 [TBL] [Abstract][Full Text] [Related]
7. Local online learning in recurrent networks with random feedback. Murray JM Elife; 2019 May; 8():. PubMed ID: 31124785 [TBL] [Abstract][Full Text] [Related]
8. HybridSNN: Combining Bio-Machine Strengths by Boosting Adaptive Spiking Neural Networks. Shen J; Zhao Y; Liu JK; Wang Y IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5841-5855. PubMed ID: 34890341 [TBL] [Abstract][Full Text] [Related]
14. Overview of Algorithms for Natural Language Processing and Time Series Analyses. Feghali J; Jimenez AE; Schilling AT; Azad TD Acta Neurochir Suppl; 2022; 134():221-242. PubMed ID: 34862546 [TBL] [Abstract][Full Text] [Related]
15. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons. Burbank KS PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645 [TBL] [Abstract][Full Text] [Related]
16. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner. Liu JK; Buonomano DV J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705 [TBL] [Abstract][Full Text] [Related]
17. Deep convolutional neural network and IoT technology for healthcare. Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147 [TBL] [Abstract][Full Text] [Related]
18. Deep Sparse Learning for Automatic Modulation Classification Using Recurrent Neural Networks. Zang K; Wu W; Luo W Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640730 [TBL] [Abstract][Full Text] [Related]
19. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data. Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798 [TBL] [Abstract][Full Text] [Related]
20. Supervised Learning Algorithm for Multilayer Spiking Neural Networks with Long-Term Memory Spike Response Model. Lin X; Zhang M; Wang X Comput Intell Neurosci; 2021; 2021():8592824. PubMed ID: 34868299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]