These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 39028989)
1. Tough and Elastic Cellulose Composite Hydrogels/Films for Flexible Wearable Sensors. Yang T; Lu SH; Zhu H; Patetsos A; McDonald E; Mellor MD; Luo Y; Rusling JF; Wang X; He J ACS Appl Mater Interfaces; 2024 Jul; 16(30):40018-40029. PubMed ID: 39028989 [TBL] [Abstract][Full Text] [Related]
2. Compressible, anti-freezing, and ionic conductive cellulose/polyacrylic acid composite hydrogel prepared via AlCl Tian Y; Zhang L; Li X; Yan M; Wang Y; Ma J; Wang Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126550. PubMed ID: 37657569 [TBL] [Abstract][Full Text] [Related]
3. Synergy coordination of cellulose-based dialdehyde and carboxyl with Fe Wang Y; Zhang H; Zhang H; Chen J; Li B; Fu S Mater Sci Eng C Mater Biol Appl; 2021 Jun; 125():112094. PubMed ID: 33965104 [TBL] [Abstract][Full Text] [Related]
5. Metal Ion Mediated Cellulose Nanofibrils Transient Network in Covalently Cross-linked Hydrogels: Mechanistic Insight into Morphology and Dynamics. Yang J; Xu F; Han CR Biomacromolecules; 2017 Mar; 18(3):1019-1028. PubMed ID: 28192670 [TBL] [Abstract][Full Text] [Related]
6. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. Shu L; Wang Z; Zhang XF; Yao J Int J Biol Macromol; 2023 Mar; 230():123425. PubMed ID: 36706872 [TBL] [Abstract][Full Text] [Related]
7. Self-adhesive and anti-fatigue cellulose-polyacrylate ionogels prepared by ultraviolet curing used as biopotential electrodes. Fu X; Chen Y; Wang W; Yu D Int J Biol Macromol; 2022 Oct; 218():533-542. PubMed ID: 35902012 [TBL] [Abstract][Full Text] [Related]
8. Recyclable and mechanically tough nanocellulose reinforced natural rubber composite conductive elastomers for flexible multifunctional sensor. Xu S; Jia Q; Zhang K; Lu C; Wang C; Wang J; Yong Q; Chu F Int J Biol Macromol; 2024 May; 268(Pt 2):131946. PubMed ID: 38692545 [TBL] [Abstract][Full Text] [Related]
9. Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors. Tong R; Chen G; Tian J; He M Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31835891 [TBL] [Abstract][Full Text] [Related]
10. Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. Zhong M; Liu YT; Xie XM J Mater Chem B; 2015 May; 3(19):4001-4008. PubMed ID: 32262621 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid). Li B; Zhang Y; Wu C; Guo B; Luo Z Carbohydr Polym; 2018 Oct; 198():1-8. PubMed ID: 30092978 [TBL] [Abstract][Full Text] [Related]
12. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Zhang M; Wang Y; Liu K; Liu Y; Xu T; Du H; Si C Carbohydr Polym; 2023 Apr; 305():120567. PubMed ID: 36737205 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties. Chen M; Quan Q; You Z; Dong Y; Zhou X Int J Biol Macromol; 2023 Dec; 253(Pt 6):127396. PubMed ID: 37827399 [TBL] [Abstract][Full Text] [Related]
14. Highly Elastic, Self-Healing, Recyclable Interlocking Double-Network Liquid-Free Ionic Conductive Elastomers via Facile Fabrication for Wearable Strain Sensors. Lan MH; Guan X; Zhu DY; Chen ZP; Liu T; Tang Z ACS Appl Mater Interfaces; 2023 Apr; 15(15):19447-19458. PubMed ID: 37037788 [TBL] [Abstract][Full Text] [Related]
15. Rapid fabricated in-situ polymerized lignin hydrogel sensor with highly adjustable mechanical properties. Yang Y; Zhu Y; Yang A; Liu T; Fang Y; Wang W; Song Y; Li Y Int J Biol Macromol; 2024 Mar; 260(Pt 2):129378. PubMed ID: 38218262 [TBL] [Abstract][Full Text] [Related]
16. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. Hao S; Shao C; Meng L; Cui C; Xu F; Yang J ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440 [TBL] [Abstract][Full Text] [Related]
17. An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor. Li M; Chen D; Sun X; Xu Z; Yang Y; Song Y; Jiang F Carbohydr Polym; 2022 May; 284():119199. PubMed ID: 35287914 [TBL] [Abstract][Full Text] [Related]
18. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Wang Z; Cong Y; Fu J J Mater Chem B; 2020 Apr; 8(16):3437-3459. PubMed ID: 32100788 [TBL] [Abstract][Full Text] [Related]
19. High Multi-Environmental Mechanical Stability and Adhesive Transparent Ionic Conductive Hydrogels Used as Smart Wearable Devices. Wu Y; Liu J; Chen Z; Chen Y; Chen W; Li H; Liu H Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501708 [TBL] [Abstract][Full Text] [Related]
20. Modulation of interfacial interactions toward strong and tough cellulose nanofiber-based transparent thin films with antifogging feature. Roy S; Ghosh BD; Goh KL; Muthoka RM; Kim J Carbohydr Polym; 2022 Feb; 278():118974. PubMed ID: 34973788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]