These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 39028989)
21. Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors. Xie Y; Gao S; Jian J; Shi X; Lai C; Wang C; Xu F; Chu F; Zhang D Int J Biol Macromol; 2023 Feb; 227():462-471. PubMed ID: 36521712 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of a High-Strength, Tough, Swelling-Resistant, Conductive Hydrogel via Ion Cross-Linking, Directional Freeze-Drying, and Rehydration. Luo J; Wang H; Wang J; Chen Y; Li C; Zhong K; Xiang J; Jia P ACS Biomater Sci Eng; 2023 May; 9(5):2694-2705. PubMed ID: 37000674 [TBL] [Abstract][Full Text] [Related]
23. Attapulgite-Reinforced Cellulose Hydrogels with High Conductivity and Antifreezing Property for Flexible Sensors. Liu H; Zhang XF; Li M; Yao J Langmuir; 2024 Oct; 40(40):20986-20994. PubMed ID: 39321402 [TBL] [Abstract][Full Text] [Related]
24. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Tong R; Chen G; Pan D; Qi H; Li R; Tian J; Lu F; He M Biomacromolecules; 2019 May; 20(5):2096-2104. PubMed ID: 30995834 [TBL] [Abstract][Full Text] [Related]
25. Cellulose nanocrystals boosted hydrophobic association in dual network polymer hydrogels as advanced flexible strain sensor for human motion detection. Khan M; Shah LA; Rahman TU; Yoo HM; Ye D; Vacharasin J J Mech Behav Biomed Mater; 2023 Feb; 138():105610. PubMed ID: 36509014 [TBL] [Abstract][Full Text] [Related]
26. Tough, Resilient, Adhesive, and Anti-Freezing Hydrogels Cross-Linked with a Macromolecular Cross-Linker for Wearable Strain Sensors. Liu R; Cui L; Wang H; Chen Q; Guan Y; Zhang Y ACS Appl Mater Interfaces; 2021 Sep; 13(35):42052-42062. PubMed ID: 34435780 [TBL] [Abstract][Full Text] [Related]
27. Liquid Metal Nanoparticles Physically Hybridized with Cellulose Nanocrystals Initiate and Toughen Hydrogels with Piezoionic Properties. Rahmani P; Shojaei A; Sakorikar T; Wang M; Mendoza-Apodaca Y; Dickey MD ACS Nano; 2024 Mar; 18(11):8038-8050. PubMed ID: 38437220 [TBL] [Abstract][Full Text] [Related]
28. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor. Chen D; Zhao X; Wei X; Zhang J; Wang D; Lu H; Jia P ACS Appl Mater Interfaces; 2020 Nov; 12(47):53247-53256. PubMed ID: 33185423 [TBL] [Abstract][Full Text] [Related]
29. Lignin reinforced hydrogels with fast self-recovery, multi-functionalities via calcium ion bridging for flexible smart sensing applications. Fu C; Yi Y; Lin J; Kong F; Chen L; Ni Y; Huang L Int J Biol Macromol; 2022 Mar; 200():226-233. PubMed ID: 34999036 [TBL] [Abstract][Full Text] [Related]
30. Stretchable and Conductive Cellulose/Conductive Polymer Composite Films for On-Skin Strain Sensors. Han JW; Park J; Kim JH; Entifar SAN; Prameswati A; Wibowo AF; Kim S; Lim DC; Lee J; Moon MW; Kim MS; Kim YH Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888475 [TBL] [Abstract][Full Text] [Related]
31. Cellulose nanocrystal/phytic acid reinforced conductive hydrogels for antifreezing and antibacterial wearable sensors. Wang Z; Ma Z; Wang S; Pi M; Wang X; Li M; Lu H; Cui W; Ran R Carbohydr Polym; 2022 Dec; 298():120128. PubMed ID: 36241329 [TBL] [Abstract][Full Text] [Related]
32. Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels. Wang J; Liu Y; Su S; Wei J; Rahman SE; Ning F; Christopher G; Cong W; Qiu J Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31766185 [TBL] [Abstract][Full Text] [Related]
33. Construction of strong and tough carboxymethyl cellulose-based oriented hydrogels by phase separation. Zhong L; Dong Z; Liu Y; Chen C; Xu Z Int J Biol Macromol; 2023 Jan; 225():79-89. PubMed ID: 36460246 [TBL] [Abstract][Full Text] [Related]
34. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278 [TBL] [Abstract][Full Text] [Related]
35. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors. Cui C; Shao C; Meng L; Yang J ACS Appl Mater Interfaces; 2019 Oct; 11(42):39228-39237. PubMed ID: 31550132 [TBL] [Abstract][Full Text] [Related]
36. Highly stretchable and transparent films based on cellulose. Lim DBK; Gong H Carbohydr Polym; 2018 Dec; 201():446-453. PubMed ID: 30241840 [TBL] [Abstract][Full Text] [Related]
37. Preparations of Tough and Conductive PAMPS/PAA Double Network Hydrogels Containing Cellulose Nanofibers and Polypyrroles. Tu CW; Tsai FC; Chen JK; Wang HP; Lee RH; Zhang J; Chen T; Wang CC; Huang CF Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260522 [TBL] [Abstract][Full Text] [Related]
38. Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors. Qin Z; Liu S; Bai J; Yin J; Li N; Jiao T Int J Biol Macromol; 2022 Nov; 220():90-96. PubMed ID: 35970366 [TBL] [Abstract][Full Text] [Related]
39. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors. Liang Y; Ye L; Sun X; Lv Q; Liang H ACS Appl Mater Interfaces; 2020 Jan; 12(1):1577-1587. PubMed ID: 31794185 [TBL] [Abstract][Full Text] [Related]
40. Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors. Cheng Y; Zang J; Zhao X; Wang H; Hu Y Carbohydr Polym; 2022 Feb; 277():118872. PubMed ID: 34893277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]