These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 39029220)

  • 1. A comprehensive prediction system for silkworm acute toxicity assessment of environmental and in-silico pesticides.
    Liu Y; Yu Y; Wu B; Qian J; Mu H; Gu L; Zhou R; Zhang H; Wu H; Bu Y
    Ecotoxicol Environ Saf; 2024 Sep; 282():116759. PubMed ID: 39029220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of chemical acute contact toxicity on honey bees via machine learning methods.
    Xu X; Zhao P; Wang Z; Zhang X; Wu Z; Li W; Tang Y; Liu G
    Toxicol In Vitro; 2021 Apr; 72():105089. PubMed ID: 33444712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental toxicity risk evaluation of nitroaromatic compounds: Machine learning driven binary/multiple classification and design of safe alternatives.
    Hao Y; Fan T; Sun G; Li F; Zhang N; Zhao L; Zhong R
    Food Chem Toxicol; 2022 Dec; 170():113461. PubMed ID: 36243219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model.
    Como F; Carnesecchi E; Volani S; Dorne JL; Richardson J; Bassan A; Pavan M; Benfenati E
    Chemosphere; 2017 Jan; 166():438-444. PubMed ID: 27705831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of in silico model predictions for mammalian acute oral toxicity and regulatory application in pesticide hazard and risk assessment.
    Bishop PL; Mansouri K; Eckel WP; Lowit MB; Allen D; Blankinship A; Lowit AB; Harwood DE; Johnson T; Kleinstreuer NC
    Regul Toxicol Pharmacol; 2024 May; 149():105614. PubMed ID: 38574841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico prediction of chemical acute oral toxicity using multi-classification methods.
    Li X; Chen L; Cheng F; Wu Z; Bian H; Xu C; Li W; Liu G; Shen X; Tang Y
    J Chem Inf Model; 2014 Apr; 54(4):1061-9. PubMed ID: 24735213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the Molecular Basis of the Acute Contact Toxicity of Diverse Organic Chemicals in the Honey Bee.
    Li X; Zhang Y; Chen H; Li H; Zhao Y
    J Chem Inf Model; 2017 Dec; 57(12):2948-2957. PubMed ID: 29161513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of Bayesian methodology in the development and validation of a tiered assessment approach towards prediction of rat acute oral toxicity.
    Firman JW; Cronin MTD; Rowe PH; Semenova E; Doe JE
    Arch Toxicol; 2022 Mar; 96(3):817-830. PubMed ID: 35034154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach.
    Burden N; Maynard SK; Weltje L; Wheeler JR
    Regul Toxicol Pharmacol; 2016 Oct; 80():241-6. PubMed ID: 27235557
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Li F; Fan D; Wang H; Yang H; Li W; Tang Y; Liu G
    Toxicol Res (Camb); 2017 Nov; 6(6):831-842. PubMed ID: 30090546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Two Acute Toxicity Test Methods for the Silkworm (Lepidoptera: Bombycidae).
    Chi Y; Qiao K; Jiang H; Lin R; Wang K
    J Econ Entomol; 2015 Feb; 108(1):145-9. PubMed ID: 26470114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals.
    Belanger SE; Rawlings JM; Carr GJ
    Environ Toxicol Chem; 2013 Aug; 32(8):1768-83. PubMed ID: 23606235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards safer pesticide management: A quantitative structure-activity relationship based hazard prediction model.
    Karaduman G; Kelleci Çelik F
    Sci Total Environ; 2024 Mar; 916():170173. PubMed ID: 38266732
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Kang Y; Jeong B; Lim DH; Lee D; Lim KM
    J Toxicol Environ Health A; 2021 Dec; 84(23):960-972. PubMed ID: 34328061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of QSAR models for evaluating pesticide toxicity against Skeletonema costatum.
    Yang L; Sang C; Wang Y; Liu W; Hao W; Chang J; Li J
    Chemosphere; 2021 Dec; 285():131456. PubMed ID: 34256203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the fish acute toxicity test for pesticide registration.
    Ceger P; Allen D; Blankinship A; Choksi N; Daniel A; Eckel WP; Hamm J; Harwood DE; Johnson T; Kleinstreuer N; Sprankle CS; Truax J; Lowit M
    Regul Toxicol Pharmacol; 2023 Mar; 139():105340. PubMed ID: 36702196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico prediction of chemical toxicity on avian species using chemical category approaches.
    Zhang C; Cheng F; Sun L; Zhuang S; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2015 Mar; 122():280-287. PubMed ID: 25532772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals.
    Licht O; Weyers A; Nagel R
    Environ Sci Pollut Res Int; 2004; 11(5):291-6. PubMed ID: 15506630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral pesticides: identification, description, and environmental implications.
    Ulrich EM; Morrison CN; Goldsmith MR; Foreman WT
    Rev Environ Contam Toxicol; 2012; 217():1-74. PubMed ID: 22350557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.
    Hamadache M; Benkortbi O; Hanini S; Amrane A; Khaouane L; Si Moussa C
    J Hazard Mater; 2016 Feb; 303():28-40. PubMed ID: 26513561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.