These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39029419)
1. Multiscale-temporal Feature Extraction and boundary confusion alleviation for VAG-based fine-grained multi-grade osteoarthritis deterioration monitoring. Zhang Y; Pan T; Ye Y; Wan Z; Liu B; Ding T Comput Methods Programs Biomed; 2024 Oct; 255():108286. PubMed ID: 39029419 [TBL] [Abstract][Full Text] [Related]
2. Monitoring deterioration of knee osteoarthritis using vibration arthrography in daily activities. Ye Y; Wan Z; Liu B; Xu H; Wang Q; Ding T Comput Methods Programs Biomed; 2022 Jan; 213():106519. PubMed ID: 34826659 [TBL] [Abstract][Full Text] [Related]
3. Vibroarthrography in patients with knee arthropathy. Tanaka N; Hoshiyama M J Back Musculoskelet Rehabil; 2012; 25(2):117-22. PubMed ID: 22684203 [TBL] [Abstract][Full Text] [Related]
4. Centralized contrastive loss with weakly supervised progressive feature extraction for fine-grained common thorax disease retrieval in chest x-ray. Chen F; You L; Zhao W; Zhou X Med Phys; 2023 Jun; 50(6):3560-3572. PubMed ID: 36515554 [TBL] [Abstract][Full Text] [Related]
5. Vibroarthrographic Signal Spectral Features in 5-Class Knee Joint Classification. Łysiak A; Froń A; Bączkowicz D; Szmajda M Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32899440 [TBL] [Abstract][Full Text] [Related]
6. An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Kim KS; Seo JH; Kang JU; Song CG Comput Methods Programs Biomed; 2009 May; 94(2):198-206. PubMed ID: 19217685 [TBL] [Abstract][Full Text] [Related]
7. Vibroarthrography-based Knee Lesions Location via Multi-Label Embedding Learning. Pan T; Zhang Y; Dong Q; Ye Y; Li Y; Wan Z; Ding T Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083623 [TBL] [Abstract][Full Text] [Related]
8. Analysis and multiclass classification of pathological knee joints using vibroarthrographic signals. Kręcisz K; Bączkowicz D Comput Methods Programs Biomed; 2018 Feb; 154():37-44. PubMed ID: 29249345 [TBL] [Abstract][Full Text] [Related]
9. Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method. Yang S; Cai S; Zheng F; Wu Y; Liu K; Wu M; Zou Q; Chen J Med Eng Phys; 2014 Oct; 36(10):1305-11. PubMed ID: 25096412 [TBL] [Abstract][Full Text] [Related]
10. A method of feature fusion and dimension reduction for knee joint pathology screening and separability evaluation criteria. Ma C; Yang J; Wang Q; Liu H; Xu H; Ding T; Yang J Comput Methods Programs Biomed; 2022 Sep; 224():106992. PubMed ID: 35810509 [TBL] [Abstract][Full Text] [Related]
11. A siamese network with adaptive gated feature fusion for individual knee OA features grades prediction. Wang K; Niu X; Dou Y; Xie D; Yang T Sci Rep; 2021 Aug; 11(1):16833. PubMed ID: 34413365 [TBL] [Abstract][Full Text] [Related]
12. Unsupervised Bidirectional Contrastive Reconstruction and Adaptive Fine-Grained Channel Attention Networks for image dehazing. Sun H; Wen Y; Feng H; Zheng Y; Mei Q; Ren D; Yu M Neural Netw; 2024 Aug; 176():106314. PubMed ID: 38669785 [TBL] [Abstract][Full Text] [Related]
13. Identifying Severity Grading of Knee Osteoarthritis from X-ray Images Using an Efficient Mixture of Deep Learning and Machine Learning Models. Ahmed SM; Mstafa RJ Diagnostics (Basel); 2022 Nov; 12(12):. PubMed ID: 36552945 [TBL] [Abstract][Full Text] [Related]
14. Feature relocation network for fine-grained image classification. Zhao P; Li Y; Tang B; Liu H; Yao S Neural Netw; 2023 Apr; 161():306-317. PubMed ID: 36774868 [TBL] [Abstract][Full Text] [Related]
15. Piecewise Classifier Mappings: Learning Fine-Grained Learners for Novel Categories With Few Examples. Wei XS; Wang P; Liu L; Shen C; Wu J IEEE Trans Image Process; 2019 Dec; 28(12):6116-6125. PubMed ID: 31265400 [TBL] [Abstract][Full Text] [Related]
16. Discrimination of knee osteoarthritis patients from asymptomatic individuals based on pain sensitivity and knee vibroarthrographic recordings. Samani A; Andersen RE; Arendt-Nielsen L; Madeleine P Physiol Meas; 2020 Jun; 41(5):055002. PubMed ID: 32272468 [TBL] [Abstract][Full Text] [Related]
17. Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep Convolutional Neural Networks. Tiulpin A; Saarakkala S Diagnostics (Basel); 2020 Nov; 10(11):. PubMed ID: 33182830 [TBL] [Abstract][Full Text] [Related]
18. Parametric representation and screening of knee joint vibroarthrographic signals. Rangayyan RM; Krishnan S; Bell GD; Frank CB; Ladly KO IEEE Trans Biomed Eng; 1997 Nov; 44(11):1068-74. PubMed ID: 9353986 [TBL] [Abstract][Full Text] [Related]
19. MSDCNN: A multiscale dilated convolution neural network for fine-grained 3D shape classification. Zhou W; Zheng F; Zhao Y; Pang Y; Yi J Neural Netw; 2024 Apr; 172():106141. PubMed ID: 38301340 [TBL] [Abstract][Full Text] [Related]
20. Stratifying knee osteoarthritis features through multitask deep hybrid learning: Data from the osteoarthritis initiative. Teoh YX; Othmani A; Lai KW; Goh SL; Usman J Comput Methods Programs Biomed; 2023 Dec; 242():107807. PubMed ID: 37778138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]