These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39029431)

  • 1. HOTGpred: Enhancing human O-linked threonine glycosylation prediction using integrated pretrained protein language model-based features and multi-stage feature selection approach.
    Pham NT; Zhang Y; Rakkiyappan R; Manavalan B
    Comput Biol Med; 2024 Sep; 179():108859. PubMed ID: 39029431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. O-GlyThr: Prediction of human O-linked threonine glycosites using multi-feature fusion.
    Tang H; Tang Q; Zhang Q; Feng P
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124761. PubMed ID: 37156312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CBDT-Oglyc: Prediction of O-glycosylation sites using ChiMIC-based balanced decision table and feature selection.
    Zeng Y; Yuan Z; Chen Y; Hu Y
    J Bioinform Comput Biol; 2023 Oct; 21(5):2350024. PubMed ID: 37899352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EMNGly: predicting N-linked glycosylation sites using the language models for feature extraction.
    Hou X; Wang Y; Bu D; Wang Y; Sun S
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37930896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Prediction of N- and O-Linked Glycosylation Sites for Human and Mouse Proteins.
    Taherzadeh G; Campbell M; Zhou Y
    Methods Mol Biol; 2022; 2499():177-186. PubMed ID: 35696081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of O-glycosylation sites based on multi-scale composition of amino acids and feature selection.
    Chen Y; Zhou W; Wang H; Yuan Z
    Med Biol Eng Comput; 2015 Jun; 53(6):535-44. PubMed ID: 25752770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O-glycosylation site prediction for
    Zhu Y; Yin S; Zheng J; Shi Y; Jia C
    J Bioinform Comput Biol; 2022 Feb; 20(1):2150029. PubMed ID: 34806952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H2Opred: a robust and efficient hybrid deep learning model for predicting 2'-O-methylation sites in human RNA.
    Pham NT; Rakkiyapan R; Park J; Malik A; Manavalan B
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38180830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ac4C-AFL: A high-precision identification of human mRNA N4-acetylcytidine sites based on adaptive feature representation learning.
    Pham NT; Terrance AT; Jeon YJ; Rakkiyappan R; Manavalan B
    Mol Ther Nucleic Acids; 2024 Jun; 35(2):102192. PubMed ID: 38779332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosylation site prediction using ensembles of Support Vector Machine classifiers.
    Caragea C; Sinapov J; Silvescu A; Dobbs D; Honavar V
    BMC Bioinformatics; 2007 Nov; 8():438. PubMed ID: 17996106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing the accuracy of SARS-CoV-2 phosphorylation site detection via meta-learning approach.
    Pham NT; Phan LT; Seo J; Kim Y; Song M; Lee S; Jeon YJ; Manavalan B
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38058187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SEP-AlgPro: An efficient allergen prediction tool utilizing traditional machine learning and deep learning techniques with protein language model features.
    Basith S; Pham NT; Manavalan B; Lee G
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133085. PubMed ID: 38871100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GlycoMine
    Li F; Li C; Revote J; Zhang Y; Webb GI; Li J; Song J; Lithgow T
    Sci Rep; 2016 Oct; 6():34595. PubMed ID: 27708373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive-unlabelled learning of glycosylation sites in the human proteome.
    Li F; Zhang Y; Purcell AW; Webb GI; Chou KC; Lithgow T; Li C; Song J
    BMC Bioinformatics; 2019 Mar; 20(1):112. PubMed ID: 30841845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Prediction of Protein O-GlcNAc Modification.
    Jia C; Zuo Y
    Methods Mol Biol; 2018; 1754():235-246. PubMed ID: 29536447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support vector machine-based mucin-type o-linked glycosylation site prediction using enhanced sequence feature encoding.
    Torii M; Liu H; Hu ZZ
    AMIA Annu Symp Proc; 2009 Nov; 2009():640-4. PubMed ID: 20351933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GlycoPP: a webserver for prediction of N- and O-glycosites in prokaryotic protein sequences.
    Chauhan JS; Bhat AH; Raghava GP; Rao A
    PLoS One; 2012; 7(7):e40155. PubMed ID: 22808107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PredGly: predicting lysine glycation sites for Homo sapiens based on XGboost feature optimization.
    Yu J; Shi S; Zhang F; Chen G; Cao M
    Bioinformatics; 2019 Aug; 35(16):2749-2756. PubMed ID: 30590442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.