These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 39029752)
1. Engineered nanomaterials exert sublethal bacterial stress at very low doses: Effects of concentration, light, and media on cell membrane permeability. Wu S; Wells G; Gray KA Sci Total Environ; 2024 Oct; 948():174861. PubMed ID: 39029752 [TBL] [Abstract][Full Text] [Related]
2. Synergistic Bacterial Stress Results from Exposure to Nano-Ag and Nano-TiO Wilke CM; Wunderlich B; Gaillard JF; Gray KA Environ Sci Technol; 2018 Mar; 52(5):3185-3194. PubMed ID: 29393629 [TBL] [Abstract][Full Text] [Related]
3. Combined Toxicity of Nano-ZnO and Nano-TiO2: From Single- to Multinanomaterial Systems. Tong T; Wilke CM; Wu J; Binh CT; Kelly JJ; Gaillard JF; Gray KA Environ Sci Technol; 2015 Jul; 49(13):8113-23. PubMed ID: 26070110 [TBL] [Abstract][Full Text] [Related]
4. Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing. Binh CT; Tong T; Gaillard JF; Gray KA; Kelly JJ PLoS One; 2014; 9(8):e106280. PubMed ID: 25162615 [TBL] [Abstract][Full Text] [Related]
5. Attenuation of Microbial Stress Due to Nano-Ag and Nano-TiO Wilke CM; Tong T; Gaillard JF; Gray KA Environ Sci Technol; 2016 Oct; 50(20):11302-11310. PubMed ID: 27635658 [TBL] [Abstract][Full Text] [Related]
6. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review. Lewis RW; Bertsch PM; McNear DH Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121 [TBL] [Abstract][Full Text] [Related]
7. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review. Wu S; Gaillard JF; Gray KA Sci Total Environ; 2021 Aug; 780():146496. PubMed ID: 34030287 [TBL] [Abstract][Full Text] [Related]
8. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model. Garner KL; Suh S; Keller AA Environ Sci Technol; 2017 May; 51(10):5541-5551. PubMed ID: 28443660 [TBL] [Abstract][Full Text] [Related]
9. A critical evaluation of the fish early-life stage toxicity test for engineered nanomaterials: experimental modifications and recommendations. Shaw BJ; Liddle CC; Windeatt KM; Handy RD Arch Toxicol; 2016 Sep; 90(9):2077-2107. PubMed ID: 27318802 [TBL] [Abstract][Full Text] [Related]
10. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating. Huk A; Izak-Nau E; El Yamani N; Uggerud H; Vadset M; Zasonska B; Duschl A; Dusinska M Part Fibre Toxicol; 2015 Jul; 12():25. PubMed ID: 26204901 [TBL] [Abstract][Full Text] [Related]
11. Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived. Moore JD; Stegemeier JP; Bibby K; Marinakos SM; Lowry GV; Gregory KB Environ Sci Technol; 2016 Mar; 50(5):2641-51. PubMed ID: 26841726 [TBL] [Abstract][Full Text] [Related]
12. Effect of Initial Speciation of Copper- and Silver-Based Nanoparticles on Their Long-Term Fate and Phytoavailability in Freshwater Wetland Mesocosms. Stegemeier JP; Avellan A; Lowry GV Environ Sci Technol; 2017 Nov; 51(21):12114-12122. PubMed ID: 29017014 [TBL] [Abstract][Full Text] [Related]
13. Effects of acute systemic administration of TiO2, ZnO, SiO2, and Ag nanoparticles on hemodynamics, hemostasis and leukocyte recruitment. Haberl N; Hirn S; Holzer M; Zuchtriegel G; Rehberg M; Krombach F Nanotoxicology; 2015; 9(8):963-71. PubMed ID: 25670207 [TBL] [Abstract][Full Text] [Related]
14. In silico analysis of nanomaterials hazard and risk. Cohen Y; Rallo R; Liu R; Liu HH Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971 [TBL] [Abstract][Full Text] [Related]
15. Beyond the passive interactions at the nano-bio interface: evidence of Cu metalloprotein-driven oxidative dissolution of silver nanoparticles. Freitas DN; Martinolich AJ; Amaris ZN; Wheeler KE J Nanobiotechnology; 2016 Jan; 14():7. PubMed ID: 26801765 [TBL] [Abstract][Full Text] [Related]
16. Toxicities of copper oxide nanomaterial and copper sulphate in early life stage zebrafish: Effects of pH and intermittent pulse exposure. Boyle D; Clark NJ; Handy RD Ecotoxicol Environ Saf; 2020 Mar; 190():109985. PubMed ID: 31841893 [TBL] [Abstract][Full Text] [Related]
18. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Callaghan NI; MacCormack TJ Comp Biochem Physiol C Toxicol Pharmacol; 2017 Mar; 193():30-41. PubMed ID: 28017784 [TBL] [Abstract][Full Text] [Related]
19. Toxicogenomic Responses of the Model Legume Medicago truncatula to Aged Biosolids Containing a Mixture of Nanomaterials (TiO₂, Ag, and ZnO) from a Pilot Wastewater Treatment Plant. Chen C; Unrine JM; Judy JD; Lewis RW; Guo J; McNear DH; Tsyusko OV Environ Sci Technol; 2015 Jul; 49(14):8759-68. PubMed ID: 26065335 [TBL] [Abstract][Full Text] [Related]
20. Application of Isotopically Labeled Engineered Nanomaterials for Detection and Quantification in Soils via Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Bland GD; Zhang P; Valsami-Jones E; Lowry GV Environ Sci Technol; 2022 Nov; 56(22):15584-15593. PubMed ID: 36255450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]