These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39029762)
21. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. UdDin I; Bano A; Masood S Ecotoxicol Environ Saf; 2015 Mar; 113():271-8. PubMed ID: 25528377 [TBL] [Abstract][Full Text] [Related]
22. Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. Yu XZ; Lin YJ; Zhang Q Chemosphere; 2019 Apr; 220():300-313. PubMed ID: 30590296 [TBL] [Abstract][Full Text] [Related]
23. Continuous flooding stimulates root iron plaque formation and reduces chromium accumulation in rice (Oryza sativa L.). Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J Sci Total Environ; 2021 Sep; 788():147786. PubMed ID: 34023601 [TBL] [Abstract][Full Text] [Related]
24. Unraveling genes promoting ROS metabolism in subcellular organelles of Oryza sativa in response to trivalent and hexavalent chromium. Fan WJ; Feng YX; Li YH; Lin YJ; Yu XZ Sci Total Environ; 2020 Nov; 744():140951. PubMed ID: 32711325 [TBL] [Abstract][Full Text] [Related]
25. Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress. Kabir AH Plant Biol (Stuttg); 2016 Jul; 18(4):710-9. PubMed ID: 26804776 [TBL] [Abstract][Full Text] [Related]
26. Differential expression of the PAL gene family in rice seedlings exposed to chromium by microarray analysis. Yu XZ; Fan WJ; Lin YJ; Zhang FF; Gupta DK Ecotoxicology; 2018 Apr; 27(3):325-335. PubMed ID: 29404866 [TBL] [Abstract][Full Text] [Related]
27. Insight into citric acid-induced chromium detoxification in rice ( Khatun MR; Mukta RH; Islam MA; Huda AKMN Int J Phytoremediation; 2019; 21(12):1234-1240. PubMed ID: 31148460 [TBL] [Abstract][Full Text] [Related]
28. [Effect of Cr(VI) stress on growth of three herbaceous plants and their Cr uptake]. Wang AY; Huang SS; Zhong GF; Xu GB; Liu ZX; Shen XB Huan Jing Ke Xue; 2012 Jun; 33(6):2028-37. PubMed ID: 22946192 [TBL] [Abstract][Full Text] [Related]
29. Use of plasma-based spectroscopy and infrared microspectroscopy techniques to determine the uptake and effects of chromium(III) and chromium(VI) on Parkinsonia aculeata. Zhao Y; Peralta-Videa JR; Lopez-Moreno ML; Saupe GB; Gardea-Torresdey JL Int J Phytoremediation; 2011; 13 Suppl 1():17-33. PubMed ID: 22046749 [TBL] [Abstract][Full Text] [Related]
30. Transcriptomic analysis of cytochrome P450 genes and pathways involved in chromium toxicity in Oryza sativa. Yu XZ; Lu CJ; Tang S; Zhang Q Ecotoxicology; 2020 Jul; 29(5):503-513. PubMed ID: 31119592 [TBL] [Abstract][Full Text] [Related]
31. Genomic profiling of rice roots with short- and long-term chromium stress. Huang TL; Huang LY; Fu SF; Trinh NN; Huang HJ Plant Mol Biol; 2014 Sep; 86(1-2):157-70. PubMed ID: 25056418 [TBL] [Abstract][Full Text] [Related]
32. Transformation and Immobilization of Chromium by Arbuscular Mycorrhizal Fungi as Revealed by SEM-EDS, TEM-EDS, and XAFS. Wu S; Zhang X; Sun Y; Wu Z; Li T; Hu Y; Su D; Lv J; Li G; Zhang Z; Zheng L; Zhang J; Chen B Environ Sci Technol; 2015 Dec; 49(24):14036-47. PubMed ID: 26551890 [TBL] [Abstract][Full Text] [Related]
33. Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Zeng F; Wu X; Qiu B; Wu F; Jiang L; Zhang G Planta; 2014 Aug; 240(2):291-308. PubMed ID: 24819712 [TBL] [Abstract][Full Text] [Related]
34. Ascorbic acid is essential for inducing chromium (VI) toxicity tolerance in tomato roots. Al-Huqail AA; Ali HM; Kushwaha BK; Al-Huqail AA; Singh VP; Siddiqui MH J Biotechnol; 2020 Oct; 322():66-73. PubMed ID: 32681851 [TBL] [Abstract][Full Text] [Related]
35. mRNA Analysis of Genes Encoded with Phytochelatin Synthase (PCS) in Rice Seedlings Exposed to Chromium: The Role of Phytochelatins in Cr Detoxification. Yu XZ; Ling QL; Li YH; Lin YJ Bull Environ Contam Toxicol; 2018 Aug; 101(2):257-261. PubMed ID: 29785647 [TBL] [Abstract][Full Text] [Related]
36. Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz). Yu XZ; Gu JD Ecotoxicol Environ Saf; 2008 Jun; 70(2):216-22. PubMed ID: 18192014 [TBL] [Abstract][Full Text] [Related]
37. Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice (Oryza sativa). Dubey S; Saxena S; Chauhan AS; Mathur P; Rani V; Chakrabaroty D Environ Sci Pollut Res Int; 2020 Jan; 27(1):380-390. PubMed ID: 31792790 [TBL] [Abstract][Full Text] [Related]
38. Chromium stress response effect on signal transduction and expression of signaling genes in rice. Trinh NN; Huang TL; Chi WC; Fu SF; Chen CC; Huang HJ Physiol Plant; 2014 Feb; 150(2):205-24. PubMed ID: 24033343 [TBL] [Abstract][Full Text] [Related]
39. Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.). Bilal S; Khan AL; Shahzad R; Kim YH; Imran M; Khan MJ; Al-Harrasi A; Kim TH; Lee IJ Ecotoxicol Environ Saf; 2018 Nov; 164():648-658. PubMed ID: 30170313 [TBL] [Abstract][Full Text] [Related]
40. Fe(III) transporter OsYSL15 may play a key role in the uptake of Cr(III) in rice (Oryza sativa L.). Li J; Chen W; Xu K; Xie W; Qi H; Tang Y; Wang S; Deng T; Morel JL; Qiu R J Hazard Mater; 2024 May; 469():133531. PubMed ID: 38447361 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]