These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 39030022)
1. Machine learning assisted microfluidics dual fluorescence flow cytometry for detecting bladder tumor cells based on morphological characteristic parameters. Zhang S; Han Z; Qi H; Zhang Z; Zheng Z; Duan X Anal Chim Acta; 2024 Aug; 1317():342899. PubMed ID: 39030022 [TBL] [Abstract][Full Text] [Related]
2. Atomic force microscopy-based assessment of multimechanical cellular properties for classification of graded bladder cancer cells and cancer early diagnosis using machine learning analysis. Zhu X; Qin R; Qu K; Wang Z; Zhao X; Xu W Acta Biomater; 2023 Mar; 158():358-373. PubMed ID: 36581006 [TBL] [Abstract][Full Text] [Related]
3. Detection of bladder cancer cells using quantitative interferometric label-free imaging flow cytometry. Dudaie M; Dotan E; Barnea I; Haifler M; Shaked NT Cytometry A; 2024 Aug; 105(8):570-579. PubMed ID: 38666711 [TBL] [Abstract][Full Text] [Related]
4. Interphase cytogenetics as an adjunct in the cytodiagnosis of urinary bladder carcinoma. A comparative study of cytology, flow cytometry and interphase cytogenetics in bladder washes. Cajulis RS; Haines GK; Frias-Hidvegi D; McVary K Anal Quant Cytol Histol; 1994 Feb; 16(1):1-10. PubMed ID: 8011035 [TBL] [Abstract][Full Text] [Related]
5. Cytology, flow cytometry, image analysis, and interphase cytogenetics by fluorescence in situ hybridization in the diagnosis of transitional cell carcinoma in bladder washes: a comparative study. Cajulis RS; Haines GK; Frias-Hidvegi D; McVary K; Bacus JW Diagn Cytopathol; 1995 Oct; 13(3):214-23; discussion 224. PubMed ID: 8575280 [TBL] [Abstract][Full Text] [Related]
6. Screening for urothelial carcinoma cells in urine based on digital holographic flow cytometry through machine learning and deep learning methods. Xin L; Xiao X; Xiao W; Peng R; Wang H; Pan F Lab Chip; 2024 May; 24(10):2736-2746. PubMed ID: 38660758 [TBL] [Abstract][Full Text] [Related]
7. Role of urinary cytology and urinary deoxyribonucleic acid flow cytometry in the diagnosis of bladder cancer. Pu YS; Tsai TC; Hsieh TS; Huang HH; Kuo SH; Hsueh WC J Formos Med Assoc; 1994 Mar; 93(3):216-21. PubMed ID: 7920061 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive optimization of urinary exfoliated tumor cells tests in bladder cancer with a promising microfluidic platform. Gao F; Wang J; Yu Y; Yan J; Ding G Cancer Med; 2023 Mar; 12(6):7283-7293. PubMed ID: 36567509 [TBL] [Abstract][Full Text] [Related]
9. Single-Cell Sequencing-Enabled Hexokinase 2 Assay for Noninvasive Bladder Cancer Diagnosis and Screening by Detecting Rare Malignant Cells in Urine. Wang Z; Chen J; Yang L; Cao M; Yu Y; Zhang R; Quan H; Jiang Q; Hua Y; Wei W; Lu P; Wu J; Shi Q Anal Chem; 2020 Dec; 92(24):16284-16292. PubMed ID: 33269906 [TBL] [Abstract][Full Text] [Related]
10. A Fully Automated Artificial Intelligence System to Assist Pathologists' Diagnosis to Predict Histologically High-grade Urothelial Carcinoma from Digitized Urine Cytology Slides Using Deep Learning. Tsuji K; Kaneko M; Harada Y; Fujihara A; Ueno K; Nakanishi M; Konishi E; Takamatsu T; Horiguchi G; Teramukai S; Ito-Ihara T; Ukimura O Eur Urol Oncol; 2024 Apr; 7(2):258-265. PubMed ID: 38065702 [TBL] [Abstract][Full Text] [Related]
11. Microchips for detection of exfoliated tumor cells in urine for identification of bladder cancer. Liang L; Wang Y; Lu S; Kong M; Lin Y; Cuzzucoli F; Wang P; Wang S Anal Chim Acta; 2018 Dec; 1044():93-101. PubMed ID: 30442409 [TBL] [Abstract][Full Text] [Related]
12. [The diagnostic value of flow cytometric DNA analysis in bladder cancer--comparison with conventional cytology]. Kawasaki T Hinyokika Kiyo; 1991 Nov; 37(11):1481-9. PubMed ID: 1767770 [TBL] [Abstract][Full Text] [Related]
13. Isomorphic red blood cells using automated urine flow cytometry is a reliable method in diagnosis of bladder cancer. Muto S; Sugiura S; Nakajima A; Horiuchi A; Inoue M; Saito K; Isotani S; Yamaguchi R; Ide H; Horie S Int J Clin Oncol; 2014 Oct; 19(5):928-34. PubMed ID: 24105457 [TBL] [Abstract][Full Text] [Related]
15. Classification between Normal and Cancerous Human Urothelial Cells by Using Micro-Dimensional Electrochemical Impedance Spectroscopy Combined with Machine Learning. Jeong HJ; Kim K; Kim HW; Park Y Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298320 [TBL] [Abstract][Full Text] [Related]
17. Detection of urinary bladder cancer with flow cytometry and hexaminolevulinate in urine samples. Cunderlíková B; Wahlqvist R; Berner A; Vasovic V; Warloe T; Nesland JM; Peng Q Cytopathology; 2007 Apr; 18(2):87-95. PubMed ID: 17397493 [TBL] [Abstract][Full Text] [Related]
18. [A comparative study of the sensitivity of bladder washing flow cytometry, voided urine cytology and bladder washing cytology in the detection of bladder carcinoma]. Tachibana M; Jitsukawa S; Tazaki H; Tashiro Y Nihon Hinyokika Gakkai Zasshi; 1989 Jul; 80(7):1025-30. PubMed ID: 2607716 [TBL] [Abstract][Full Text] [Related]
19. Flow cytometry versus urinary cytology in the diagnosis and follow-up of bladder tumors: critical review of a 5-year experience. Billerey C; Lamy B; Bittard H; Rozan S; Carbillet JP World J Urol; 1993; 11(3):156-60. PubMed ID: 8401634 [TBL] [Abstract][Full Text] [Related]
20. Using adaptive genetic algorithms combined with high sensitivity single cell-based technology to detect bladder cancer in urine and provide a potential noninvasive marker for response to anti-PD1 immunotherapy. Alanee S; Deebajah M; Chen PI; Mora R; Guevara J; Francisco B; Patterson BK Urol Oncol; 2020 Mar; 38(3):77.e9-77.e15. PubMed ID: 31570249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]