These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39030023)

  • 1. Optically printed plasmonic fiber tip-assisted SERS-based chemical sensing and single biological cell studies.
    K M; K S; Bankapur A; George SD
    Anal Chim Acta; 2024 Aug; 1317():342903. PubMed ID: 39030023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform.
    Cong L; Liang L; Cao F; Sun D; Yue J; Xu W; Liang C; Xu S
    Mikrochim Acta; 2019 May; 186(6):367. PubMed ID: 31115772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Trapping of Plasmonic Nanoparticles for In Situ Surface-Enhanced Raman Spectroscopy Characterizations.
    Dai X; Qiu W; Huang J
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35815975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems.
    Xie Y; Yang S; Mao Z; Li P; Zhao C; Cohick Z; Huang PH; Huang TJ
    ACS Nano; 2014 Dec; 8(12):12175-84. PubMed ID: 25402207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optothermally Assembled Nanostructures.
    Li J; Zheng Y
    Acc Mater Res; 2021 May; 2(5):352-363. PubMed ID: 34396151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing.
    Chen H; Tian F; Chi J; Kanka J; Du H
    Opt Lett; 2014 Oct; 39(20):5822-5. PubMed ID: 25361094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy.
    Hang Y; Wang A; Wu N
    Chem Soc Rev; 2024 Mar; 53(6):2932-2971. PubMed ID: 38380656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Force Microscope Guided SERS Spectra Observation for Au@Ag-4MBA@PVP Plasmonic Nanoparticles.
    Yang L; Xu L; Wu X; Fang H; Zhong S; Wang Z; Bu J; Yuan X
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31640276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-Confined Site-Specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as Surface Enhanced Raman Spectroscopy Substrates.
    Wang Y; Yu Y; Liu Y; Yang S
    ACS Sens; 2018 Nov; 3(11):2343-2350. PubMed ID: 30350595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced chemical transformation of PATP adsorbed on Ag nanoparticles by surface-enhanced Raman spectroscopy-a study of the effects from surface morphology of substrate and surface coverage of PATP.
    Xu JF; Liu GK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():873-7. PubMed ID: 25467654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation of Ag nanoparticle based on surface acoustic wave for surface-enhanced Raman spectroscopy detection of dopamine.
    Park JO; Choi Y; Ahn HM; Lee CK; Chun H; Park YM; Kim KB
    Anal Chim Acta; 2024 Jan; 1285():342036. PubMed ID: 38057052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SERS Platform Based on Hollow-Core Microstructured Optical Fiber: Technology of UV-Mediated Gold Nanoparticle Growth.
    Merdalimova AA; Rudakovskaya PG; Ermatov TI; Smirnov AS; Kosolobov SS; Skibina JS; Demina PA; Khlebtsov BN; Yashchenok AM; Gorin DA
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications.
    Khlebtsov NG; Lin L; Khlebtsov BN; Ye J
    Theranostics; 2020; 10(5):2067-2094. PubMed ID: 32089735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraminiature optical fiber-tip directly-printed plasmonic biosensors for label-free biodetection.
    Zhang Y; Wu H; Wang H; Yin B; Wong SHD; Zhang AP; Tam HY
    Biosens Bioelectron; 2022 Dec; 218():114761. PubMed ID: 36209530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles.
    Fang Y; Li Y; Xu H; Sun M
    Langmuir; 2010 Jun; 26(11):7737-46. PubMed ID: 20455558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals.
    Wu W; Liu L; Dai Z; Liu J; Yang S; Zhou L; Xiao X; Jiang C; Roy VA
    Sci Rep; 2015 May; 5():10208. PubMed ID: 25974125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS.
    Liu S; Cui R; Ma Y; Yu Q; Kannegulla A; Wu B; Fan H; Wang AX; Kong X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117664. PubMed ID: 31670224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.