These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 39030454)

  • 1. Integrating machine learning and geospatial data analysis for comprehensive flood hazard assessment.
    Singha C; Rana VK; Pham QB; Nguyen DC; Łupikasza E
    Environ Sci Pollut Res Int; 2024 Jul; 31(35):48497-48522. PubMed ID: 39030454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery.
    Razavi-Termeh SV; Sadeghi-Niaraki A; Seo M; Choi SM
    Sci Total Environ; 2023 May; 873():162285. PubMed ID: 36801341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced machine learning algorithms for flood susceptibility modeling - performance comparison: Red Sea, Egypt.
    Youssef AM; Pourghasemi HR; El-Haddad BA
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66768-66792. PubMed ID: 35508847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach based on biology-inspired metaheuristic algorithms in combination with random forest to enhance the flood susceptibility mapping.
    Razavi-Termeh SV; Sadeghi-Niaraki A; Choi SM
    J Environ Manage; 2023 Nov; 345():118790. PubMed ID: 37647734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region.
    Saha TK; Pal S; Talukdar S; Debanshi S; Khatun R; Singha P; Mandal I
    J Environ Manage; 2021 Nov; 297():113344. PubMed ID: 34314957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of hard and soft supervised machine learning for flood susceptibility mapping.
    Andaryani S; Nourani V; Haghighi AT; Keesstra S
    J Environ Manage; 2021 Aug; 291():112731. PubMed ID: 33962279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of machine learning algorithms and new hybrid multi-criteria analysis for flood hazard and mapping.
    Solaimani K; Darvishi S; Shokrian F
    Environ Sci Pollut Res Int; 2024 May; 31(22):32950-32971. PubMed ID: 38671269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future.
    Janizadeh S; Chandra Pal S; Saha A; Chowdhuri I; Ahmadi K; Mirzaei S; Mosavi AH; Tiefenbacher JP
    J Environ Manage; 2021 Nov; 298():113551. PubMed ID: 34435571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India.
    Arora A; Arabameri A; Pandey M; Siddiqui MA; Shukla UK; Bui DT; Mishra VN; Bhardwaj A
    Sci Total Environ; 2021 Jan; 750():141565. PubMed ID: 32882492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh.
    Rahman M; Chen N; Elbeltagi A; Islam MM; Alam M; Pourghasemi HR; Tao W; Zhang J; Shufeng T; Faiz H; Baig MA; Dewan A
    J Environ Manage; 2021 Oct; 295():113086. PubMed ID: 34153582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using algorithmic game theory to improve supervised machine learning: A novel applicability approach in flood susceptibility mapping.
    Nasiri Khiavi A; Vafakhah M
    Environ Sci Pollut Res Int; 2024 Aug; 31(40):52740-52757. PubMed ID: 39158659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flood susceptibility mapping by best-worst and logistic regression methods in Mersin, Turkey.
    Özay B; Orhan O
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):45151-45170. PubMed ID: 36702983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh.
    Penki R; Basina SS; Tanniru SR
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India.
    Pathan AI; Girish Agnihotri P; Said S; Patel D
    Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms.
    Riazi M; Khosravi K; Shahedi K; Ahmad S; Jun C; Bateni SM; Kazakis N
    Sci Total Environ; 2023 May; 871():162066. PubMed ID: 36773901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping flood susceptibility with PROMETHEE multi-criteria analysis method.
    Plataridis K; Mallios Z
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41267-41289. PubMed ID: 38847951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A geospatial approach for assessing urban flood risk zones in Chennai, Tamil Nadu, India.
    Bagyaraj M; Senapathi V; Chung SY; Gopalakrishnan G; Xiao Y; Karthikeyan S; Nadiri AA; Barzegar R
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):100562-100575. PubMed ID: 37639084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urban flood susceptibility analysis of Saroor Nagar Watershed of India using Geomatics-based multi-criteria analysis framework.
    Vaddiraju SC; Talari R
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):107021-107040. PubMed ID: 36520296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of flood probability and prioritization of sub-watersheds: A comparison of game theory to machine learning.
    Avand M; Khiavi AN; Khazaei M; Tiefenbacher JP
    J Environ Manage; 2021 Oct; 295():113040. PubMed ID: 34147991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coastal Flood risk assessment using ensemble multi-criteria decision-making with machine learning approaches.
    Asiri MM; Aldehim G; Alruwais N; Allafi R; Alzahrani I; Nouri AM; Assiri M; Ahmed NA
    Environ Res; 2024 Mar; 245():118042. PubMed ID: 38160971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.