These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 39031055)
1. From Chips-in-Lab to Point-of-Care Live Cell Device: Development of a Microfluidic Device for On-Site Cell Culture and High-Throughput Drug Screening. Feng Y; Che B; Fu J; Sun Y; Ma W; Tian J; Dai L; Jing G; Zhao W; Sun D; Zhang C ACS Biomater Sci Eng; 2024 Aug; 10(8):5399-5408. PubMed ID: 39031055 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic cell chips for high-throughput drug screening. Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838 [TBL] [Abstract][Full Text] [Related]
3. Cell-Based Assays on Microfluidics for Drug Screening. Liu X; Zheng W; Jiang X ACS Sens; 2019 Jun; 4(6):1465-1475. PubMed ID: 31074263 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research. Campbell JM; Balhoff JB; Landwehr GM; Rahman SM; Vaithiyanathan M; Melvin AT Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213089 [TBL] [Abstract][Full Text] [Related]
5. Automated Platform for Long-Term Culture and High-Content Phenotyping of Single C. elegans Worms. Atakan HB; Xiang R; Cornaglia M; Mouchiroud L; Katsyuba E; Auwerx J; Gijs MAM Sci Rep; 2019 Oct; 9(1):14340. PubMed ID: 31586133 [TBL] [Abstract][Full Text] [Related]
6. The revolution of PDMS microfluidics in cellular biology. Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564 [TBL] [Abstract][Full Text] [Related]
7. An integrated microfludic device for culturing and screening of Giardia lamblia. Zheng GX; Zhang XM; Yang YS; Zeng SR; Wei JF; Wang YH; Li YJ Exp Parasitol; 2014 Feb; 137():1-7. PubMed ID: 24316463 [TBL] [Abstract][Full Text] [Related]
8. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Jang KJ; Suh KY Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and Applications of Microfluidic Devices: A Review. Niculescu AG; Chircov C; Bîrcă AC; Grumezescu AM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670545 [TBL] [Abstract][Full Text] [Related]
14. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing. Desta IT; Al-Sharif A; AlGharibeh N; Mustafa N; Orozaliev A; Giakoumidis N; Gunsalus KC; Song YA SLAS Technol; 2017 Aug; 22(4):431-436. PubMed ID: 27630097 [TBL] [Abstract][Full Text] [Related]
15. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368 [TBL] [Abstract][Full Text] [Related]
16. Smart Cell Culture Monitoring and Drug Test Platform Using CMOS Capacitive Sensor Array. Nabovati G; Ghafar-Zadeh E; Letourneau A; Sawan M IEEE Trans Biomed Eng; 2019 Apr; 66(4):1094-1104. PubMed ID: 30139044 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans. Cornaglia M; Lehnert T; Gijs MAM Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of static incubation time in microfluidic cell culture platforms exploiting extended air-liquid interface. Bose N; Das T; Chakraborty D; Maiti TK; Chakraborty S Lab Chip; 2012 Jan; 12(1):69-73. PubMed ID: 22076598 [TBL] [Abstract][Full Text] [Related]
19. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients. Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582 [TBL] [Abstract][Full Text] [Related]