These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39031316)

  • 1. Hydrological modelling using SWAT for the assessment of streamflow dynamics in the Ganga River basin.
    Chakraborty K; Saha S; Mandal D
    Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 39031316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of land use land cover changes on hydrological response of Punpun River basin.
    Ranjan S; Singh V
    Environ Monit Assess; 2023 Sep; 195(9):1137. PubMed ID: 37656325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the impact of past and future climate scenarios on streamflow in a highly mountainous watershed: A case study in the West Seti River Basin, Nepal.
    Bhatta B; Shrestha S; Shrestha PK; Talchabhadel R
    Sci Total Environ; 2020 Oct; 740():140156. PubMed ID: 32563002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing Hydropower Potential in Nepal's Sunkoshi River Basin: An Integrated GIS and SWAT Hydrological Modeling Approach.
    Bhattarai R; Mishra BK; Bhattarai D; Khatiwada D; Kumar P; Meraj G
    Scientifica (Cairo); 2024; 2024():1007081. PubMed ID: 38293703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rainfall-Runoff modelling using SWAT and eight artificial intelligence models in the Murredu Watershed, India.
    Shekar PR; Mathew A; S AP; Gopi VP
    Environ Monit Assess; 2023 Aug; 195(9):1041. PubMed ID: 37589780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using SWAT to Evaluate Streamflow and Lake Sediment Loading in the Xinjiang River Basin with Limited Data.
    Yuan L; Forshay KJ
    Water (Basel); 2019 Dec; 12(1):39. PubMed ID: 32983578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Soil and Water Assessment Tool and Artificial Neural Network models for hydrologic simulation in different climatic regions of Asia.
    Pradhan P; Tingsanchali T; Shrestha S
    Sci Total Environ; 2020 Jan; 701():134308. PubMed ID: 31704397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new interpretable streamflow prediction approach based on SWAT-BiLSTM and SHAP.
    Huang F; Zhang X
    Environ Sci Pollut Res Int; 2024 Apr; 31(16):23896-23908. PubMed ID: 38430443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrological model-based streamflow reconstruction for Indian sub-continental river basins, 1951-2021.
    Chuphal DS; Mishra V
    Sci Data; 2023 Oct; 10(1):717. PubMed ID: 37853036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projected Streamflow in the Kurau River Basin of Western Malaysia under Future Climate Scenarios.
    Adib MNM; Rowshon MK; Mojid MA; Habibu I
    Sci Rep; 2020 May; 10(1):8336. PubMed ID: 32433561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of HEC-HMS and SWAT hydrological models for simulating the streamflow in sub-humid tropical region in India.
    Prakash C; Ahirwar A; Lohani AK; Singh HP
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41182-41196. PubMed ID: 38847949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing daily streamflow simulation using the coupled SWAT-BiLSTM approach for climate change impact assessment in Hai-River Basin.
    Zhang X; Qi Y; Liu F; Li H; Sun S
    Sci Rep; 2023 Sep; 13(1):15169. PubMed ID: 37704827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model.
    Anand J; Gosain AK; Khosa R
    Sci Total Environ; 2018 Dec; 644():503-519. PubMed ID: 29990901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CMIP6 multi-model based analysis of potential climate change effects on watershed runoff using SWAT model: A case study of kunhar river basin, Pakistan.
    Waheed A; Jamal MH; Javed MF; Idlan Muhammad K
    Heliyon; 2024 Apr; 10(8):e28951. PubMed ID: 38655367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing physically-based hydrological modeling with an ensemble of machine-learning reservoir operation modules under heavy human regulation using easily accessible data.
    Tu T; Li Y; Duan K; Zhao T
    J Environ Manage; 2024 May; 359():121044. PubMed ID: 38714035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting phosphorus and nitrate loads by using SWAT model in Vamanapuram River Basin, Kerala, India.
    Saravanan S; Singh L; Sathiyamurthi S; Sivakumar V; Velusamy S; Shanmugamoorthy M
    Environ Monit Assess; 2022 Dec; 195(1):186. PubMed ID: 36482108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios.
    Shukla S; Jain SK; Kansal ML
    Sci Total Environ; 2021 Nov; 795():148871. PubMed ID: 34378536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the water budget and hydrological characteristics and responses to land use in a monsoonal climate river basin in South China.
    Wu Y; Chen J
    Environ Manage; 2013 Jun; 51(6):1174-86. PubMed ID: 23609306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling groundwater quality of the Athabasca River Basin in the subarctic region using a modified SWAT model.
    Meshesha TW; Wang J; Melaku ND; McClain CN
    Sci Rep; 2021 Jun; 11(1):13574. PubMed ID: 34193903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-comparison of water balance components of river basins draining into selected delta districts of Eastern India.
    Visakh S; Raju PV; Kulkarni SS; Diwakar PG
    Sci Total Environ; 2019 Mar; 654():1258-1269. PubMed ID: 30841399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.