These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39031316)

  • 21. Investigating the impact of climate and land-use land cover changes on hydrological predictions over the Krishna river basin under present and future scenarios.
    Chanapathi T; Thatikonda S
    Sci Total Environ; 2020 Jun; 721():137736. PubMed ID: 32169648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intercomparison of SWAT and ANN techniques in simulating streamflows in the Astore Basin of the Upper Indus.
    Khan S; Khan AU; Khan M; Khan FA; Khan S; Khan J
    Water Sci Technol; 2023 Oct; 88(7):1847-1862. PubMed ID: 37831000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emission estimation and fate modelling of three typical pesticides in Dongjiang River basin, China.
    Zhang B; Zhang QQ; Zhang SX; Xing C; Ying GG
    Environ Pollut; 2020 Mar; 258():113660. PubMed ID: 31818613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of the SWAT model to the Xiangjiang river watershed in subtropical central China.
    Luo Q; Li Y; Wang K; Wu J
    Water Sci Technol; 2013; 67(9):2110-6. PubMed ID: 23656956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative evaluation of streamflow prediction using the SWAT and NNAR models in the Meenachil River Basin of Central Kerala, India.
    Saranya MS; Vinish VN
    Water Sci Technol; 2023 Oct; 88(8):2002-2018. PubMed ID: 37906455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrological model parameter regionalization: Runoff estimation using machine learning techniques in the Tha Chin River Basin, Thailand.
    Hlaing PT; Humphries UW; Waqas M
    MethodsX; 2024 Dec; 13():102792. PubMed ID: 39022181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the performance of SWAT and hybrid M5P tree models in rainfall-runoff simulation.
    Kumar S; Pandey KK; Ahirwar A
    J Water Health; 2024 Apr; 22(4):639-651. PubMed ID: 38678419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India.
    Reddy NM; Saravanan S; Paneerselvam B
    Environ Res; 2024 Jun; 250():118403. PubMed ID: 38365058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Satellite-based soil moisture enhances the reliability of agro-hydrological modeling in large transboundary river basins.
    Eini MR; Massari C; Piniewski M
    Sci Total Environ; 2023 May; 873():162396. PubMed ID: 36841410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overcoming equifinality: time-varying analysis of sensitivity and identifiability of SWAT runoff and sediment parameters in an arid and semiarid watershed.
    Wu L; Liu X; Chen J; Yu Y; Ma X
    Environ Sci Pollut Res Int; 2022 May; 29(21):31631-31645. PubMed ID: 35006572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling SWAT and Bi-LSTM for improving daily-scale hydro-climatic simulation and climate change impact assessment in a tropical river basin.
    Yang S; Tan ML; Song Q; He J; Yao N; Li X; Yang X
    J Environ Manage; 2023 Mar; 330():117244. PubMed ID: 36621311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling water quantity and quality for a typical agricultural plain basin of northern China by a coupled model.
    Xue B; Zhang H; Wang Y; Tan Z; Zhu Y; Shrestha S
    Sci Total Environ; 2021 Oct; 790():148139. PubMed ID: 34098274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sedimentation assessment using hydrological simulation and bathymetry survey: The case of river Amissa drainage basin, Ghana.
    Essel-Yorke KA; Anim M; Nyarko BK
    Heliyon; 2023 Mar; 9(3):e14343. PubMed ID: 36942247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analyzing river disruption factors and ecological flow in China's Liu River Basin amid environmental changes.
    Li M; Wang H; Gu H; Chi B
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):26282-26299. PubMed ID: 38499930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of streamflow and sediment with the soil and water assessment tool in a data scarce catchment in the three gorges region, china.
    Bieger K; Hörmann G; Fohrer N
    J Environ Qual; 2014 Jan; 43(1):37-45. PubMed ID: 25602538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Simulation of water and carbon coupling of the Pearl River basin based on the WaSSI model].
    Wang XL; Duan K; Wei L
    Ying Yong Sheng Tai Xue Bao; 2022 May; 33(5):1377-1386. PubMed ID: 35730097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of accurate baseline representation for three Central Iowa watersheds within a HAWQS-based SWAT analyses.
    Brighenti TM; Gassman PW; Schilling KE; Srinivasan R; Liebman M; Thompson JR
    Sci Total Environ; 2022 Sep; 839():156302. PubMed ID: 35640760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrological responses to land degradation in the Northwest Benin Owena River Basin, Nigeria.
    Aladejana OO; Salami AT; Adetoro OO
    J Environ Manage; 2018 Nov; 225():300-312. PubMed ID: 30098496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations.
    Mohammed IN; Bolten JD; Srinivasan R; Lakshmi V
    Remote Sens (Basel); 2018 Jun; 10(6):885. PubMed ID: 29938116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrological impacts of future climate and land use/cover changes in the Lower Mekong Basin: a case study of the Srepok River Basin, Vietnam.
    Nhi PTT; Khoi DN; Trang NTT; Van Ty T; Fang S
    Environ Monit Assess; 2022 Oct; 194(Suppl 2):768. PubMed ID: 36255530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.