These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 39031407)
1. Mental fatigue recognition study based on 1D convolutional neural network and short-term ECG signals. Chen R; Wang R; Fei J; Huang L; Bi X; Wang J Technol Health Care; 2024; 32(5):3409-3422. PubMed ID: 39031407 [TBL] [Abstract][Full Text] [Related]
2. [Mental fatigue state recognition method based on convolution neural network and long short-term memory]. Wang H; Zhang P; Jin F; Zhao B; Zeng Q; Xiao W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):34-40. PubMed ID: 38403602 [TBL] [Abstract][Full Text] [Related]
3. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Yıldırım Ö; Pławiak P; Tan RS; Acharya UR Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122 [TBL] [Abstract][Full Text] [Related]
4. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network. Wang F; Chen D; Yao W; Fu R J Neurosci Methods; 2023 Dec; 400():109983. PubMed ID: 37838152 [TBL] [Abstract][Full Text] [Related]
5. Robust R-Peak Detection in Low-Quality Holter ECGs Using 1D Convolutional Neural Network. Zahid MU; Kiranyaz S; Ince T; Devecioglu OC; Chowdhury MEH; Khandakar A; Tahir A; Gabbouj M IEEE Trans Biomed Eng; 2022 Jan; 69(1):119-128. PubMed ID: 34110986 [TBL] [Abstract][Full Text] [Related]
6. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations. Vu H; Kim HC; Jung M; Lee JH Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633 [TBL] [Abstract][Full Text] [Related]
7. Detection of Atrial Fibrillation Using 1D Convolutional Neural Network. Hsieh CH; Li YS; Hwang BJ; Hsiao CH Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32290113 [TBL] [Abstract][Full Text] [Related]
8. Non-destructive detection and classification of textile fibres based on hyperspectral imaging and 1D-CNN. Huang J; He H; Lv R; Zhang G; Zhou Z; Wang X Anal Chim Acta; 2022 Sep; 1224():340238. PubMed ID: 35998989 [TBL] [Abstract][Full Text] [Related]
9. [Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias]. Li D; Zhang H; Liu Z; Huang J; Wang T Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):189-198. PubMed ID: 31016934 [TBL] [Abstract][Full Text] [Related]
10. CEFEs: A CNN Explainable Framework for ECG Signals. Maweu BM; Dakshit S; Shamsuddin R; Prabhakaran B Artif Intell Med; 2021 May; 115():102059. PubMed ID: 34001319 [TBL] [Abstract][Full Text] [Related]
11. Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network. Xu L; Li J; Feng D Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005443 [TBL] [Abstract][Full Text] [Related]
12. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals. Hwang B; You J; Vaessen T; Myin-Germeys I; Park C; Zhang BT Telemed J E Health; 2018 Oct; 24(10):753-772. PubMed ID: 29420125 [TBL] [Abstract][Full Text] [Related]
13. An improved multi-input deep convolutional neural network for automatic emotion recognition. Chen P; Zou B; Belkacem AN; Lyu X; Zhao X; Yi W; Huang Z; Liang J; Chen C Front Neurosci; 2022; 16():965871. PubMed ID: 36267236 [TBL] [Abstract][Full Text] [Related]
14. Detecting slow eye movements using multi-scale one-dimensional convolutional neural network for driver sleepiness detection. Jiao Y; He X; Jiao Z J Neurosci Methods; 2023 Sep; 397():109939. PubMed ID: 37579794 [TBL] [Abstract][Full Text] [Related]
15. [Sleep apnea automatic detection method based on convolutional neural network]. Gao Q; Shang L; Wu K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Aug; 38(4):678-685. PubMed ID: 34459167 [TBL] [Abstract][Full Text] [Related]
16. Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction. Makimoto H; Höckmann M; Lin T; Glöckner D; Gerguri S; Clasen L; Schmidt J; Assadi-Schmidt A; Bejinariu A; Müller P; Angendohr S; Babady M; Brinkmeyer C; Makimoto A; Kelm M Sci Rep; 2020 May; 10(1):8445. PubMed ID: 32439873 [TBL] [Abstract][Full Text] [Related]
17. One-shot screening: Utilization of a two-dimensional convolutional neural network for automatic detection of left ventricular hypertrophy using electrocardiograms. Cai C; Imai T; Hasumi E; Fujiu K Comput Methods Programs Biomed; 2024 Apr; 247():108097. PubMed ID: 38428250 [TBL] [Abstract][Full Text] [Related]
18. Classification of Continuous ECG Segments - Performance Analysis of a Deep Learning Model. Barbosa LCN; Lopes D; Escrivaes I; Moreira AHJ; Carvalho V; Vilaca JL; Morais P Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082961 [TBL] [Abstract][Full Text] [Related]
19. Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals. Chen S; Xu K; Yao X; Ge J; Li L; Zhu S; Li Z Comput Methods Programs Biomed; 2021 Nov; 211():106451. PubMed ID: 34644668 [TBL] [Abstract][Full Text] [Related]
20. HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN. Islam MS; Hasan KF; Sultana S; Uddin S; Lio' P; Quinn JMW; Moni MA Neural Netw; 2023 May; 162():271-287. PubMed ID: 36921434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]