These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39031765)
1. Low-Temperature Methane Combustion Using Ozone over Coβ Catalyst. Yasumura S; Nagai K; Miyazaki S; Qian Y; Chen D; Toyao T; Kamiya Y; Shimizu KI J Am Chem Soc; 2024 Jul; 146(30):20982-20988. PubMed ID: 39031765 [TBL] [Abstract][Full Text] [Related]
2. Designing main-group catalysts for low-temperature methane combustion by ozone. Yasumura S; Saita K; Miyakage T; Nagai K; Kon K; Toyao T; Maeno Z; Taketsugu T; Shimizu KI Nat Commun; 2023 Jul; 14(1):3926. PubMed ID: 37400448 [TBL] [Abstract][Full Text] [Related]
3. Lean methane combustion over zeolite-supported Pd catalysts: Structure-performance relationship and deactivation mechanism. Liu X; Chen J; Han B; Li R; Shi L; Wu Z; Weng X J Environ Sci (China); 2024 Nov; 145():128-138. PubMed ID: 38844313 [TBL] [Abstract][Full Text] [Related]
4. [Optimization of Promoter and Support for Co-based/zeolites Catalysts in Catalytic Reduction of NO Pan H; Jian YF; Chen NN; Liu HX; He C; He YF Huan Jing Ke Xue; 2017 Jul; 38(7):3085-3094. PubMed ID: 29964653 [TBL] [Abstract][Full Text] [Related]
5. Electron transferring with oxygen defects on Ni-promoted Pd/Al Cai J; Wang J; Liu C; Zhang Y; Liu Y; Wang P; Wang X; Fang X; Yu Y; Shan W J Colloid Interface Sci; 2024 Oct; 671():712-724. PubMed ID: 38823112 [TBL] [Abstract][Full Text] [Related]
6. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
7. In Situ Synthesis of Encapsulated Pd@silicalite-2 for Highly Stable Methane Catalytic Combustion. Sun Y; Xu G; Wang Y; Shi W; Yu Y; He H Environ Sci Technol; 2023 Dec; 57(48):20370-20379. PubMed ID: 37947383 [TBL] [Abstract][Full Text] [Related]
8. Nickel Hydroxide Nanosheets Prepared by a Direct Manual Grinding Strategy for High-Efficiency Catalytic Combustion of Methane. Chen K; Li W; Guo G; Zhu C; Wu W; Yuan L ACS Omega; 2022 Mar; 7(10):8536-8546. PubMed ID: 35309416 [TBL] [Abstract][Full Text] [Related]
9. Construction of a Pd(PdO)/Co Ma Y; Li S; Zhang T; Zhang Y; Wang X; Xiao Y; Zhan Y; Jiang L Nanoscale; 2021 Mar; 13(9):5026-5032. PubMed ID: 33645618 [TBL] [Abstract][Full Text] [Related]
10. Component regulation in novel La-Co-O-C composite catalyst for boosted redox reactions and enhanced thermal stability in methane combustion. Chu P; Wang S; Zhang Y; Zhao S; Wang Y; Deng J; Duan E J Environ Sci (China); 2023 Apr; 126():459-469. PubMed ID: 36503772 [TBL] [Abstract][Full Text] [Related]
11. Comparative Study of Commercial Silica and Sol-Gel-Derived Porous Silica from Cornhusk for Low-Temperature Catalytic Methane Combustion. Owusu Prempeh C; Hartmann I; Formann S; Eiden M; Neubauer K; Atia H; Wotzka A; Wohlrab S; Nelles M Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37176995 [TBL] [Abstract][Full Text] [Related]
12. Co-Exsolution of Ni-Based Alloy Catalysts for the Valorization of Carbon Dioxide and Methane. Najimu M; Jo S; Gilliard-AbdulAziz KL Acc Chem Res; 2023 Nov; 56(22):3132-3141. PubMed ID: 37939260 [TBL] [Abstract][Full Text] [Related]
13. [Effect of SO2 on the catalytic performance of CoH-ZSM-5 for selective catalytic reduction of NO by CH4]. Zhang JQ; Liu YY; He Y; Fan WB; Li RF Huan Jing Ke Xue; 2006 Sep; 27(9):1717-21. PubMed ID: 17117621 [TBL] [Abstract][Full Text] [Related]
14. Recent progress of catalytic methane combustion over transition metal oxide catalysts. Gao Y; Jiang M; Yang L; Li Z; Tian FX; He Y Front Chem; 2022; 10():959422. PubMed ID: 36003612 [TBL] [Abstract][Full Text] [Related]
15. Tuning Pd species via electronic metal-support interaction for methane combustion. Li Q; Si W; Peng Y; Wang Y; Li J J Colloid Interface Sci; 2024 Aug; 667():12-21. PubMed ID: 38615619 [TBL] [Abstract][Full Text] [Related]
16. Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts. Chein R; Yang Z ACS Omega; 2019 Dec; 4(25):20911-20922. PubMed ID: 31867481 [TBL] [Abstract][Full Text] [Related]
17. Room-Temperature Activation of the C-H Bond in Methane over Terminal Zn Oda A; Ohkubo T; Yumura T; Kobayashi H; Kuroda Y Inorg Chem; 2019 Jan; 58(1):327-338. PubMed ID: 30495931 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous production of syngas and carbon nanotubes from CO Sae-Tang N; Saconsint S; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S Sci Rep; 2024 Jul; 14(1):16282. PubMed ID: 39009758 [TBL] [Abstract][Full Text] [Related]
19. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst. Park MH; Choi BK; Park YH; Moon DJ; Park NC; Kim YC J Nanosci Nanotechnol; 2015 Jul; 15(7):5255-8. PubMed ID: 26373118 [TBL] [Abstract][Full Text] [Related]
20. Boosting Methane Combustion over Pd/Y Wu Y; Yang W; Zhang H; Xu H; Jiao Y; Zhong L; Wang J; Chen Y ACS Appl Mater Interfaces; 2023 Sep; 15(38):44887-44898. PubMed ID: 37721481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]