These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39031872)

  • 1. Revealing the Mechanism Underlying 3D-AFM Imaging of Suspended Structures by Experiments and Simulations.
    Alam MS; Penedo M; Sumikama T; Miyazawa K; Hirahara K; Fukuma T
    Small Methods; 2024 Dec; 8(12):e2400287. PubMed ID: 39031872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.
    Kobayashi K; Liang Y; Amano K; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T
    Langmuir; 2016 Apr; 32(15):3608-16. PubMed ID: 27018633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on the mechanical properties of a carbon nanotube probe with a high aspect ratio.
    Cheng B; Yang S; Woldu YT; Shafique S; Wang F
    Nanotechnology; 2020 Apr; 31(14):145707. PubMed ID: 31842011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Application of Carbon Nanotube Atomic Force Microscopy Probes Using PeakForce Tapping Mode.
    Slattery AD; Shearer CJ; Shapter JG; Blanch AJ; Quinton JS; Gibson CT
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30304791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of topographic and three-dimensional atomic force microscopy images of biopolymers by calculating forces.
    Sumikama T
    Biophys Rev; 2023 Dec; 15(6):2059-2064. PubMed ID: 38192341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of low-resolution molecular structures from simulated atomic force microscopy images.
    Dasgupta B; Miyashita O; Tama F
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129420. PubMed ID: 31472175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Generation of Multipurpose Atomic Force Microscopy Tips.
    Glia A; Deliorman M; Qasaimeh MA
    Adv Sci (Weinh); 2022 Sep; 9(27):e2201489. PubMed ID: 35853246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical and thermal coupling to a single-wall carbon nanotube device using an electrothermal nanoprobe.
    Lee J; Liao A; Pop E; King WP
    Nano Lett; 2009 Apr; 9(4):1356-61. PubMed ID: 19245239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Fitting of Biomolecular Structures to Atomic Force Microscopy Images via Biased Molecular Simulations.
    Niina T; Fuchigami S; Takada S
    J Chem Theory Comput; 2020 Feb; 16(2):1349-1358. PubMed ID: 31909999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy.
    Fukuma T; Garcia R
    ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subsurface imaging of flexible circuits via contact resonance atomic force microscopy.
    Wang W; Ma C; Chen Y; Zheng L; Liu H; Chu J
    Beilstein J Nanotechnol; 2019; 10():1636-1647. PubMed ID: 31467825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM.
    Penedo M; Miyazawa K; Okano N; Furusho H; Ichikawa T; Alam MS; Miyata K; Nakamura C; Fukuma T
    Sci Adv; 2021 Dec; 7(52):eabj4990. PubMed ID: 34936434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the applicability of carbon nanotubes as nanomechanical probes and manipulators.
    Jin K; Feng X; Ng TW; Xu Z
    Nanotechnology; 2012 Oct; 23(41):415502. PubMed ID: 23018682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of curvature in highly compliant probe cantilevers during carbon nanotube growth.
    Chen IC; Chen LH; Orme CA; Jin S
    Nano Lett; 2007 Oct; 7(10):3035-40. PubMed ID: 17887798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled growth of a single carbon nanotube on an AFM probe.
    Cheng B; Yang S; Li W; Li S; Shafique S; Wu D; Ji S; Sun Y; Jiang Z
    Microsyst Nanoeng; 2021; 7():80. PubMed ID: 34721888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computed Three-Dimensional Atomic Force Microscopy Images of Biopolymers Using the Jarzynski Equality.
    Sumikama T; Federici Canova F; Gao DZ; Penedo M; Miyazawa K; Foster AS; Fukuma T
    J Phys Chem Lett; 2022 Jun; 13(23):5365-5371. PubMed ID: 35678499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes.
    Choi J; Park BC; Ahn SJ; Kim DH; Lyou J; Dixson RG; Orji NG; Fu J; Vorburger TV
    J Micro Nanolithogr MEMS MOEMS; 2016 Jul; 15(3):034005. PubMed ID: 27840664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous imaging of the topography and electrochemical activity of a 2D carbon nanotube network using a dual functional L-shaped nanoprobe.
    Lee E; Sung J; An T; Shin H; Nam HG; Lim G
    Analyst; 2015 May; 140(9):3150-6. PubMed ID: 25807070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.