These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39031886)
1. Reinforcement learning-based anatomical maps for pancreas subregion and duct segmentation. Amiri S; Vrtovec T; Mustafaev T; Deufel CL; Thomsen HS; Sillesen MH; Brandt EGS; Andersen MB; Müller CF; Ibragimov B Med Phys; 2024 Oct; 51(10):7378-7392. PubMed ID: 39031886 [TBL] [Abstract][Full Text] [Related]
2. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
3. A cascaded fully convolutional network framework for dilated pancreatic duct segmentation. Shen C; Roth HR; Hayashi Y; Oda M; Miyamoto T; Sato G; Mori K Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):343-354. PubMed ID: 34951681 [TBL] [Abstract][Full Text] [Related]
4. Anatomical attention can help to segment the dilated pancreatic duct in abdominal CT. Shen C; Roth HR; Hayashi Y; Oda M; Sato G; Miyamoto T; Rueckert D; Mori K Int J Comput Assist Radiol Surg; 2024 Apr; 19(4):655-664. PubMed ID: 38498132 [TBL] [Abstract][Full Text] [Related]
5. A Two-Phase Approach using Mask R-CNN and 3D U-Net for High-Accuracy Automatic Segmentation of Pancreas in CT Imaging. Dogan RO; Dogan H; Bayrak C; Kayikcioglu T Comput Methods Programs Biomed; 2021 Aug; 207():106141. PubMed ID: 34020373 [TBL] [Abstract][Full Text] [Related]
6. Lung tumor segmentation in 4D CT images using motion convolutional neural networks. Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001 [TBL] [Abstract][Full Text] [Related]
7. nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer. Yang E; Kim JH; Min JH; Jeong WK; Hwang JA; Lee JH; Shin J; Kim H; Lee SE; Baek SY Acad Radiol; 2024 Jul; 31(7):2784-2794. PubMed ID: 38350812 [TBL] [Abstract][Full Text] [Related]
8. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation. Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118 [TBL] [Abstract][Full Text] [Related]
9. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897 [TBL] [Abstract][Full Text] [Related]
10. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
11. Attention-guided duplex adversarial U-net for pancreatic segmentation from computed tomography images. Li M; Lian F; Li Y; Guo S J Appl Clin Med Phys; 2022 Apr; 23(4):e13537. PubMed ID: 35199477 [TBL] [Abstract][Full Text] [Related]
12. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation. Yan Y; Zhang D PLoS One; 2021; 16(5):e0252287. PubMed ID: 34043732 [TBL] [Abstract][Full Text] [Related]
13. Segmentation of Pancreatic Subregions in Computed Tomography Images. Javed S; Qureshi TA; Deng Z; Wachsman A; Raphael Y; Gaddam S; Xie Y; Pandol SJ; Li D J Imaging; 2022 Jul; 8(7):. PubMed ID: 35877639 [TBL] [Abstract][Full Text] [Related]
14. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
16. Interactive 3D U-net for the segmentation of the pancreas in computed tomography scans. Boers TGW; Hu Y; Gibson E; Barratt DC; Bonmati E; Krdzalic J; van der Heijden F; Hermans JJ; Huisman HJ Phys Med Biol; 2020 Mar; 65(6):065002. PubMed ID: 31978921 [TBL] [Abstract][Full Text] [Related]
17. Mutual enhancing learning-based automatic segmentation of CT cardiac substructure. Momin S; Lei Y; McCall NS; Zhang J; Roper J; Harms J; Tian S; Lloyd MS; Liu T; Bradley JD; Higgins K; Yang X Phys Med Biol; 2022 May; 67(10):. PubMed ID: 35447610 [No Abstract] [Full Text] [Related]
18. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related]
19. Automated pancreatic segmentation and fat fraction evaluation based on a self-supervised transfer learning network. Zhang G; Zhan Q; Gao Q; Mao K; Yang P; Gao Y; Wang L; Song B; Chen Y; Bian Y; Shao C; Lu J; Ma C Comput Biol Med; 2024 Mar; 170():107989. PubMed ID: 38286105 [TBL] [Abstract][Full Text] [Related]
20. Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]