These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 39031903)

  • 1. Improving clinical abbreviation sense disambiguation using attention-based Bi-LSTM and hybrid balancing techniques in imbalanced datasets.
    Hosseini M; Rasekh AH; Keshavarzi A
    J Eval Clin Pract; 2024 Oct; 30(7):1327-1336. PubMed ID: 39031903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disambiguating Clinical Abbreviations by One-to-All Classification: Algorithm Development and Validation Study.
    Sung SF; Hu YH; Chen CY
    JMIR Med Inform; 2024 Oct; 12():e56955. PubMed ID: 39352715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A convolutional route to abbreviation disambiguation in clinical text.
    Joopudi V; Dandala B; Devarakonda M
    J Biomed Inform; 2018 Oct; 86():71-78. PubMed ID: 30118854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging Large Language Models for Clinical Abbreviation Disambiguation.
    Hosseini M; Hosseini M; Javidan R
    J Med Syst; 2024 Feb; 48(1):27. PubMed ID: 38411689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Preliminary Study of Clinical Abbreviation Disambiguation in Real Time.
    Wu Y; Denny JC; Rosenbloom ST; Miller RA; Giuse DA; Song M; Xu H
    Appl Clin Inform; 2015; 6(2):364-74. PubMed ID: 26171081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical word sense disambiguation with bidirectional long short-term memory and attention-based neural networks.
    Zhang C; Biś D; Liu X; He Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):502. PubMed ID: 31787096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disambiguating Clinical Abbreviations Using a One-Fits-All Classifier Based on Deep Learning Techniques.
    Jaber A; Martínez P
    Methods Inf Med; 2022 Jun; 61(S 01):e28-e34. PubMed ID: 35104909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid feature weighted attention based deep learning approach for an intrusion detection system using the random forest algorithm.
    Hashmi A; Barukab OM; Hamza Osman A
    PLoS One; 2024; 19(5):e0302294. PubMed ID: 38781186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD).
    Wu Y; Denny JC; Trent Rosenbloom S; Miller RA; Giuse DA; Wang L; Blanquicett C; Soysal E; Xu J; Xu H
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e79-e86. PubMed ID: 27539197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Link-topic model for biomedical abbreviation disambiguation.
    Kim S; Yoon J
    J Biomed Inform; 2015 Feb; 53():367-80. PubMed ID: 25554684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De-identification of Clinical Text via Bi-LSTM-CRF with Neural Language Models.
    Tang B; Jiang D; Chen Q; Wang X; Yan J; Shen Y
    AMIA Annu Symp Proc; 2019; 2019():857-863. PubMed ID: 32308882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Comprehensive Clinical Abbreviation Disambiguation Using Machine-Labeled Training Data.
    Finley GP; Pakhomov SV; McEwan R; Melton GB
    AMIA Annu Symp Proc; 2016; 2016():560-569. PubMed ID: 28269852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. deepBioWSD: effective deep neural word sense disambiguation of biomedical text data.
    Pesaranghader A; Matwin S; Sokolova M; Pesaranghader A
    J Am Med Inform Assoc; 2019 May; 26(5):438-446. PubMed ID: 30811548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the transformer model algorithm in chinese word sense disambiguation: a case study in chinese language.
    Li L; Li J; Wang H; Nie J
    Sci Rep; 2024 Mar; 14(1):6320. PubMed ID: 38491085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Word Sense Disambiguation of clinical abbreviations with hyperdimensional computing.
    Moon S; Berster BT; Xu H; Cohen T
    AMIA Annu Symp Proc; 2013; 2013():1007-16. PubMed ID: 24551390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AD-CovNet: An exploratory analysis using a hybrid deep learning model to handle data imbalance, predict fatality, and risk factors in Alzheimer's patients with COVID-19.
    Akter S; Das D; Haque RU; Quadery Tonmoy MI; Hasan MR; Mahjabeen S; Ahmed M
    Comput Biol Med; 2022 Jul; 146():105657. PubMed ID: 35672170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Classification Accuracy with Integrated Contextual Gate Network: Deep Learning Approach for Functional Near-Infrared Spectroscopy Brain-Computer Interface Application.
    Akhter J; Naseer N; Nazeer H; Khan H; Mirtaheri P
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cohort selection for clinical trials using hierarchical neural network.
    Xiong Y; Shi X; Chen S; Jiang D; Tang B; Wang X; Chen Q; Yan J
    J Am Med Inform Assoc; 2019 Nov; 26(11):1203-1208. PubMed ID: 31305921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generative adaptive convolutional neural network with attention mechanism for driver fatigue detection with class-imbalanced and insufficient data.
    He L; Zhang L; Sun Q; Lin X
    Behav Brain Res; 2024 Apr; 464():114898. PubMed ID: 38382711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Word embeddings and recurrent neural networks based on Long-Short Term Memory nodes in supervised biomedical word sense disambiguation.
    Jimeno Yepes A
    J Biomed Inform; 2017 Sep; 73():137-147. PubMed ID: 28797709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.