These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 39032224)
41. BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors. Sharifi-Renani M; Mahoor MH; Clary CW Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447628 [TBL] [Abstract][Full Text] [Related]
42. Protocol of a systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. Rast FM; Labruyère R Syst Rev; 2018 Oct; 7(1):174. PubMed ID: 30355320 [TBL] [Abstract][Full Text] [Related]
43. Tracking Joint Angles During Whole-Arm Movements Using Electromagnetic Sensors. Clark R; Dickinson T; Loaiza J; Geiger DW; Charles SK J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 31891379 [TBL] [Abstract][Full Text] [Related]
44. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics. Niswander W; Wang W; Kontson K Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105876 [TBL] [Abstract][Full Text] [Related]
45. Elbow joint kinematics during cricket bowling using magneto-inertial sensors: A feasibility study. Wells D; Alderson J; Camomilla V; Donnelly C; Elliott B; Cereatti A J Sports Sci; 2019 Mar; 37(5):515-524. PubMed ID: 30175947 [TBL] [Abstract][Full Text] [Related]
46. An Open-Source and Wearable System for Measuring 3D Human Motion in Real-Time. Slade P; Habib A; Hicks JL; Delp SL IEEE Trans Biomed Eng; 2022 Feb; 69(2):678-688. PubMed ID: 34383640 [TBL] [Abstract][Full Text] [Related]
47. Inertial measurement unit-based pose estimation: Analyzing and reducing sensitivity to sensor placement and body measures. Kianifar R; Joukov V; Lee A; Raina S; Kulić D J Rehabil Assist Technol Eng; 2019; 6():2055668318813455. PubMed ID: 31245025 [TBL] [Abstract][Full Text] [Related]
48. On Inertial Body Tracking in the Presence of Model Calibration Errors. Miezal M; Taetz B; Bleser G Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266 [TBL] [Abstract][Full Text] [Related]
49. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features. Teufl W; Taetz B; Miezal M; Lorenz M; Pietschmann J; Jöllenbeck T; Fröhlich M; Bleser G Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744141 [TBL] [Abstract][Full Text] [Related]
50. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations. Bouvier B; Duprey S; Claudon L; Dumas R; Savescu A Sensors (Basel); 2015 Jul; 15(8):18813-33. PubMed ID: 26263993 [TBL] [Abstract][Full Text] [Related]
51. Measurement of Ankle Joint Movements Using IMUs during Running. Kim BH; Hong SH; Oh IW; Lee YW; Kee IH; Lee SY Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205721 [TBL] [Abstract][Full Text] [Related]
52. Forward kinematics using IMU on-body sensor network for mobile analysis of human kinematics. Taylor T; Ko S; Mastrangelo C; Bamberg SJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1230-3. PubMed ID: 24109916 [TBL] [Abstract][Full Text] [Related]
53. From raw measurements to human pose - a dataset with low-cost and high-end inertial-magnetic sensor data. Palermo M; Cerqueira SM; André J; Pereira A; Santos CP Sci Data; 2022 Sep; 9(1):591. PubMed ID: 36180479 [TBL] [Abstract][Full Text] [Related]
54. Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis. Robert-Lachaine X; Mecheri H; Larue C; Plamondon A Gait Posture; 2017 May; 54():80-86. PubMed ID: 28279850 [TBL] [Abstract][Full Text] [Related]
55. A new calibration methodology for thorax and upper limbs motion capture in children using magneto and inertial sensors. Ricci L; Formica D; Sparaci L; Lasorsa FR; Taffoni F; Tamilia E; Guglielmelli E Sensors (Basel); 2014 Jan; 14(1):1057-72. PubMed ID: 24412901 [TBL] [Abstract][Full Text] [Related]
56. Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit. Bonnet V; Mazzà C; Fraisse P; Cappozzo A IEEE Trans Biomed Eng; 2013 Jul; 60(7):1920-6. PubMed ID: 23392337 [TBL] [Abstract][Full Text] [Related]
57. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks. Senanayake D; Halgamuge S; Ackland DC J Biomech; 2021 Aug; 125():110552. PubMed ID: 34237661 [TBL] [Abstract][Full Text] [Related]
58. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running. Matijevich ES; Scott LR; Volgyesi P; Derry KH; Zelik KE Hum Mov Sci; 2020 Dec; 74():102690. PubMed ID: 33132194 [TBL] [Abstract][Full Text] [Related]
59. Functional calibration does not improve the concurrent validity of magneto-inertial wearable sensor-based thorax and lumbar angle measurements when compared with retro-reflective motion capture. Cottam DS; Campbell AC; Davey PC; Kent P; Elliott BC; Alderson JA Med Biol Eng Comput; 2021 Nov; 59(11-12):2253-2262. PubMed ID: 34529184 [TBL] [Abstract][Full Text] [Related]
60. A Wearable-Sensor System with AI Technology for Real-Time Biomechanical Feedback Training in Hammer Throw. Wang Y; Shan G; Li H; Wang L Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617025 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]